We study the chaotic behavior of order parameters in two coupled ensembles of self-sustained oscillators. Coupling within each of these ensembles is switched on and off alternately, while the mutual interaction between these two subsystems is arranged through quadratic nonlinear coupling. We show numerically that in the course of alternating Kuramoto transitions to synchrony and back to asynchrony, the exchange of excitations between two subpopulations proceeds in such a way that their collective phases are governed by an expanding circle map similar to the Bernoulli map. We perform the Lyapunov analysis of the dynamics and discuss finite-size effects.
REFERENCES
1.
M. C.
Cross
and P. C.
Hohenberg
, “Pattern formation outside of equilibrium
,” Rev. Mod. Phys.
65
, 851
(1993
).2.
Y.
Kuramoto
, “Self-entrainment of a population of coupled nonlinear oscillators
,” in International Symposium on Mathematical Problems in Theoretical Physics
, edited by H.
Araki
(Springer
, New York
, 1975
)3.
Y.
Kuramoto
and I.
Nishikawa
, “Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities
,” J. Stat. Phys.
49
, 569
(1987
).4.
A.
Pikovsky
, M.
Rosenblum
, and J.
Kurths
, Synchronization. A Universal Concept in Nonlinear Sciences
(Cambridge University Press
, Cambridge
, 2001
).5.
J. A.
Acebrón
, L. L.
Bonilla
, C. J.
Pérez Vicente
, F.
Ritort
, and R.
Spigler
, “The Kuramoto model: A simple paradigm for synchronization phenomena
,” Rev. Mod. Phys.
77
, 137
(2005
).6.
K. A.
Takeuchi
, F.
Ginelli
, and H.
Chaté
, “Lyapunov analysis captures the collective dynamics of large chaotic systems
,” Phys. Rev. Lett.
103
, 154103
(2009
).7.
S.
Watanabe
and S. H.
Strogatz
, “Constants of motion for superconducting Josephson arrays
,” Physica D
74
, 197
(1994
).8.
E.
Ott
and Th. M.
Antonsen
, “Low dimensional behavior of large systems of globally coupled oscillators
,” Chaos
18
, 037113
(2008
).9.
B.
Hasselblatt
and A.
Katok
, A First Course in Dynamics with a Panorama of Recent Developments
(Cambridge University Press
, Cambridge
, 2003
).10.
S. P.
Kuznetsov
, “Example of a physical system with a hyperbolic attractor of the Smale-Williams type
,” Phys. Rev. Lett.
95
, 144101
(2005
).11.
S. P.
Kuznetsov
and E. P.
Seleznev
, “A strange attractor of the Smale-Williams type in the chaotic dynamics of a physical system
,” J. Exp. Theor. Phys.
102
, 355
(2006
).12.
S.
Kuznetsov
and A.
Pikovsky
, “Autonomous coupled oscillators with hyperbolic strange attractors
,” Physica D
232
, 87
(2007
).13.
A.
Katok
and B.
Hasselblatt
, Introduction to the Modern Theory of Dynamical Systems
(Cambridge University Press
, Cambridge
, 1995
).14.
S. P.
Kuznetsov
and I. R.
Sataev
, “Hyperbolic attractor in a system of coupled non-autonomous van der Pol oscillators: Numerical test for expanding and contracting cones
,” Phys. Lett. A
365
, 97
(2007
).15.
D.
Wilczak
, “Uniformly hyperbolic attractor of the Smale-Williams type for a Poincarè map in the Kuznetsov system
,” SIAM J. Appl. Dyn. Syst.
9
(4
), 1263
–1283
(2010
).16.
T.
Shibata
and K.
Kaneko
, “Collective chaos
,” Phys. Rev. Lett.
81
, 4116
(1998
).17.
M.
Cencini
, M.
Falcioni
, D.
Vergni
, and A.
Vulpiani
, “Macroscopic chaos in globally coupled maps
,” Physica D
130
, 58
(1999
).18.
A. S.
Pikovsky
and J.
Kurths
, “Collective behavior in ensembles of globally coupled maps
,” Physica D
76
, 411
(1994
).19.
P. C.
Matthews
and S. H.
Strogatz
, “Phase diagram for the collective behavior of limit-cycle oscillators
,” Phys. Rev. Lett.
65
, 1701
(1990
).20.
P. C.
Matthews
, R. E.
Mirollo
, and S. H.
Strogatz
, “Dynamics of a large system of coupled nonlinear oscillators
,” Physica D
52
, 293
(1991
).21.
V.
Hakim
and W. J.
Rappel
, “Dynamics of the globally coupled complex Ginzburg-Landau equation
,” Phys. Rev. A
46
, R7347
(1992
).22.
N.
Nakagawa
and Y.
Kuramoto
, “Collective chaos in a population of globally coupled oscillators
,” Prog. Theor. Phys.
89
, 313
(1993
).23.
N.
Nakagawa
and Y.
Kuramoto
, “From collective oscillations to collective chaos in a globally coupled oscillator system
,” Physica D
75
, 74
(1994
).24.
N.
Nakagawa
and Y.
Kuramoto
, “Anomalous Lyapunov spectrum in globally coupled oscillators
,” Physica D
80
, 307
(1995
).25.
For the parameters as in Figs. 1 and 2 below, we observed that the amplitudes of individual oscillators (to be distinguished from the amplitudes of the mean fields presented in these figures) vary in the range of 1.66–1.96 at the edge of the band and in the range of 1.74–1.98 in the middle of the band, while the value of according to formula above yields 1.87.
26.
D.
Topaj
and A.
Pikovsky
, “Reversibility versus synchronization in oscillator lattices
,” Physica D
170
, 118
(2002
).27.
O. V.
Popovych
, Y. L.
Maistrenko
, and P. A.
Tass
, “Phase chaos in coupled oscillators
,” Phys. Rev. E
71
, 065201
(2005
).28.
K.
Wiesenfeld
and J. W.
Swift
, “Averaged equations for Josephson junction series arrays
,” Phys. Rev. E
51
, 1020
(1995
).29.
A. F.
Glova
, “Phase locking of optically coupled lasers
,” Quantum Electron.
33
, 283
(2003
).30.
A. S.
Dmitriev
and A. I.
Panas
, Dynamical Chaos: New Information Carriers for Communication Systems
(Fizmatlit
, Moscow
, 2002
) (in Russian).31.
A. A.
Koronovskii
, O. I.
Moskalenko
, and A. E.
Hramov
, “On the use of chaotic synchronization for secure communication
,” Phys. Usp.
52
, 1281
(2009
).32.
K. A.
Lukin
, “Noise radar technology
,” Telecommun. Radio Eng. (Engl. Transl.)
55
, 8
(2001
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.