We consider the behavior of Stuart–Landau oscillators as generic limit-cycle oscillators when they are interacting with delay. We investigate the role of amplitude and phase instabilities in producing symmetry-breaking/restoring transitions. Using analytical and numerical methods we compare the dynamics of one oscillator with delayed feedback, two oscillators mutually coupled with delay, and two delay-coupled elements with self-feedback. Taking only the phase dynamics into account, no chaotic dynamics is observed, and the stability of the identical synchronization solution is the same in each of the three studied networks of delay-coupled elements. When allowing for a variable oscillation amplitude, the delay can induce amplitude instabilities. We provide analytical proof that, in case of two mutually coupled elements, the onset of an amplitude instability always results in antiphase oscillations, leading to a leader-laggard behavior in the chaotic regime. Adding self-feedback with the same strength and delay as the coupling stabilizes the system in the transverse direction and, thus, promotes the onset of identically synchronized behavior.

1.
S.
Boccaletti
,
J.
Kurths
,
G.
Osipov
,
D. L.
Valladares
, and
C. S.
Zhou
,
Phys. Rep.
366
,
1
(
2002
).
2.
A.
Pikovsky
,
M. G.
Rosenblum
, and
J.
Kurths
,
Synchronization, A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge
,
2001
).
3.
W.
Singer
,
Nature (London)
397
,
391
(
1999
).
4.
F.
Varela
,
J.
Lachaux
,
E.
Rodriguez
, and
J.
Martinerie
,
Nat. Rev. Neurosci.
2
,
229
(
2001
).
5.
H. G.
Winful
and
L.
Rahman
,
Phys. Rev. Lett.
65
,
1575
(
1990
).
6.
M. Y.
Kim
,
R.
Roy
,
J. L.
Aron
,
T. W.
Carr
, and
I. B.
Schwartz
,
Phys. Rev. Lett.
94
,
088101
(
2005
).
7.
K.
Wiesenfeld
,
P.
Colet
, and
S. H.
Strogatz
,
Phys. Rev. Lett.
76
,
404
(
1996
).
8.
G.
Filatrella
,
N. F.
Pedersen
, and
K.
Wiesenfeld
,
Phys. Rev. E
61
,
2513
(
2000
).
9.
Z.
Néda
,
E.
Ravasz
,
Y.
Brechet
,
T.
Vicsek
, and
A.
Barabasi
,
Nature (London)
403
,
849
(
2000
).
10.
Y.
Marchenko
and
V.
Rubanik
,
Izv. Vyssh. Uchebn. Zaved., Radiofiz.
8
,
679
(
1965
).
11.
Y.
Marchenko
,
Izv. Vyssh. Uchebn. Zaved., Radiofiz.
10
,
1533
(
1967
).
12.
A.
Kouda
and
S.
Mori
,
IEEE Trans. Circuits Syst.
CAS-28
,
247
(
1981
).
13.
G.
Orosz
,
R. E.
Wilson
,
R.
Szalai
, and
G.
Stépan
,
Phys. Rev. E
80
,
046205
(
2009
).
14.
M. K.
Yeung
and
S. H.
Strogatz
,
Phys. Rev. Lett.
82
,
648
(
1999
).
15.
C.
Masoller
,
A.
Marti
, and
D.
Zanette
,
Physica A
325
,
186
(
2003
).
16.
T.
Erneux
,
Applied Delay Differential Equations
(
Springer
,
New York
,
2009
).
17.
B.
Balachandran
,
T.
Kamár-Nagy
, and
D.
Gilsinn
,
Delay Differential Equations, Recent Advances and New Directions
(
Springer
,
New York
,
2009
).
18.
W.
Michiels
and
S. -I.
Niculescu
,
Stability and Stabilization of Time-Delay Systems. An Eigenvalue Based Approach
,
Advances in Design and Control
Vol.
12
(
SIAM
,
Philadelphia
,
2007
).
19.
G.
Stepan
,
Philos. Trans. R. Soc. London, Ser. A
367
,
1059
(
2009
).
20.
W.
Just
,
A.
Pelster
,
M.
Schanz
and
E.
Schöll
,
Philos. Trans. R. Soc. London, Ser. A
368
,
303
(
2010
).
21.
T.
Heil
,
I.
Fischer
,
W.
Elsäßer
,
J.
Mulet
, and
C. R.
Mirasso
,
Phys. Rev. Lett.
86
,
795
(
2001
).
22.
F.
Rogister
and
J.
Garcia-Ojalvo
,
Opt. Lett.
28
,
1176
(
2003
).
23.
J.
Mulet
,
C. R.
Mirasso
,
T.
Heil
, and
I.
Fischer
,
J. Opt. Soc. Am. B
6
,
97
(
2004
).
24.
J. K.
White
,
M.
Matus
, and
J. V.
Moloney
,
Phys. Rev. E
65
,
036229
(
2002
).
25.
S.
Tang
,
R.
Vicente
,
M.
Chiang
,
C. R.
Mirasso
, and
J.
Liu
,
IEEE J. Sel. Top. Quantum Electron.
10
,
936
(
2004
).
26.
A.
Wagemakers
,
J.
Buldu
, and
M.
Sanjuan
,
Chaos
17
,
023128
(
2007
).
27.
I.
Fischer
,
R.
Vicente
,
J. M.
Buldú
,
M.
Peil
,
C. R.
Mirasso
,
M. C.
Torrent
, and
J.
García-Ojalvo
,
Phys. Rev. Lett.
97
,
123902
(
2006
).
28.
E.
Klein
,
N.
Gross
,
M.
Rosenbluh
,
W.
Kinzel
,
L.
Khaykovich
, and
I.
Kanter
,
Phys. Rev. E
73
,
066214
(
2006
).
29.
R.
Vicente
,
S.
Tang
,
J.
Mulet
,
C. R.
Mirasso
, and
J. -M.
Liu
,
Phys. Rev. E
73
,
047201
(
2006
).
30.
R.
Vicente
,
L.
Gollo
,
C.
Mirasso
,
I.
Fischer
, and
G.
Pipa
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
17157
(
2008
).
31.
Y.
Kuramoto
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
7
,
789
(
1997
).
32.
H.
Daido
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
7
,
807
(
1997
).
33.
S.
Wirkus
and
R.
Rand
,
Nonlinear Dyn.
30
,
205
(
2002
).
34.
D. V.
Ramana Reddy
,
A.
Sen
, and
G. L.
Johnston
,
Phys. Rev. Lett.
85
,
3381
(
2000
).
35.
R.
Dodla
,
A.
Sen
, and
G. L.
Johnston
,
Phys. Rev. E
69
,
056217
(
2004
).
36.
C. U.
Choe
,
T.
Dahms
,
P.
Hövel
, and
E.
Schöll
,
Phys. Rev. E
81
,
025205
(R) (
2010
).
37.
D.
Pieroux
and
P.
Mandel
,
Phys. Rev. E
68
,
036204
(
2003
).
38.
M. G.
Earl
and
S. H.
Strogatz
,
Phys. Rev. E
67
,
036204
(
2003
).
39.
O.
D’Huys
,
R.
Vicente
,
T.
Erneux
,
J.
Danckaert
, and
I.
Fischer
,
Chaos
18
,
037116
(
2008
).
40.
S.
Yanchuk
,
Math. Methods Appl. Sci.
28
,
363
(
2005
).
41.
S.
Yanchuk
and
P.
Perlikowski
,
Phys. Rev. E
79
,
046221
(
2009
).
42.
S.
Yanchuk
,
M.
Wolfrum
,
P.
Hövel
, and
E.
Schöll
,
Phys. Rev. E
74
,
026201
(
2006
).
43.
R.
Lang
and
K.
Kobayashi
,
IEEE J. Quantum Electron.
16
,
347
(
1980
).
44.
A. M.
Levine
,
G. H. M.
van Tartwijk
,
D.
Lenstra
, and
T.
Erneux
,
Phys. Rev. A
52
,
R3436
(
1995
).
46.
G.
Van Tartwijk
,
A.
Levine
, and
D.
Lenstra
,
IEEE J. Sel. Top. Quantum Electron.
1
,
466
(
1995
).
47.
R.
Davidchack
,
Y.
Lai
,
A.
Gavrielides
, and
V.
Kovanis
,
Phys. Lett. A
267
,
350
(
2000
).
48.
H. G.
Schuster
and
P.
Wagner
,
Prog. Theor. Phys.
81
,
939
(
1989
).
49.
The angle ψ refers to the eigenvector (1,eiψ) of the adjecancy matrix of the network. Since for a unidirectional ring, the eigenvectors are of the same form, this proof can be generalized. We obtain there that stability will break first for the smallest possible value of ψ=2π/N for N the number of elements in the ring.
You do not currently have access to this content.