We study a network of three populations of coupled phase oscillators with identical frequencies. The populations interact nonlocally, in the sense that all oscillators are coupled to one another, but more weakly to those in neighboring populations than to those in their own population. Using this system as a model system, we discuss for the first time the influence of network topology on the existence of so-called chimera states. In this context, the network with three populations represents an interesting case because the populations may either be connected as a triangle, or as a chain, thereby representing the simplest discrete network of either a ring or a line segment of oscillator populations. We introduce a special parameter that allows us to study the effect of breaking the triangular network structure, and to vary the network symmetry continuously such that it becomes more and more chain-like. By showing that chimera states only exist for a bounded set of parameter values, we demonstrate that their existence depends strongly on the underlying network structures, and conclude that chimeras exist on networks with a chain-like character.

1.
Abrams
,
D. M.
,
Mirollo
,
R.
,
Strogatz
,
S. H.
, and
Wiley
,
D. A.
, “
Solvable model for chimera states of coupled oscillators
,”
Phys. Rev. Lett.
101
,
084103
(
2008
).
2.
Abrams
,
D. M.
and
Strogatz
,
S. H.
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
).
3.
Abrams
,
D. M.
and
Strogatz
,
S. H.
, “
Chimera states on a ring of nonlocally coupled oscillators
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
16
,
21
(
2006
).
4.
Acebrón
,
J. A.
,
Bonilla
,
L. L.
,
Pérez Vicente
,
C. J.
,
Ritort
,
F.
, and
Spigler
,
R.
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
,
137
(
2005
).
5.
Bordyugov
,
G.
,
Pikovsky
,
A.
, and
Rosenblum
,
M.
,
Phys. Rev. E
82
,
035205
(R) (
2010
).
6.
Kawamura
,
Y.
, “
Chimera Ising walls in forced nonlocally coupled oscillators
,”
Phys. Rev. E
75
,
056204
(
2007
).
7.
Kawamura
,
Y.
and
Kuramoto
,
Y.
, “
Hole structures in nonlocally coupled noisy phase oscillators
,”
Phys. Rev. E
76
,
047201
(
2007
).
8.
Kuramoto
,
Y.
,
Chemical Oscillations, Waves, and Turbulence
(
Springer
,
Berlin
,
1984
).
9.
Kuramoto
,
Y.
, “
Scaling behavior of turbulent oscillators with non-local interaction
,”
Prog. Theor. Phys.
94
,
321
(
1995
).
10.
Kuramoto
,
Y.
and
Battogtokh
,
D.
, “
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,”
Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.)
5
,
380
(
2002
).
11.
Laing
,
C. R.
, “
Chimeras in networks of planar oscillators
,”
Phys. Rev. E
81
,
066221
(
2010
).
12.
Laing
,
C. R.
, “
Chimera states in heterogeneous networks
,”
Chaos
19
,
013113
(
2009
).
13.
Martens
,
E. A.
, “
Bistable chimera attractors on a triangular network of oscillator populations
,”
Phys. Rev. E
82
,
016216
(
2010
).
14.
Martens
,
E. A.
,
Barreto
,
E.
,
Strogatz
,
S. H.
,
Ott
,
E.
,
So
,
P.
, and
Antonsen
,
T. M.
, “
Exact results for the Kuramoto model with a bimodal frequency distribution
,”
Phys. Rev. E
79
,
026204
(
2009
).
15.
Martens
,
E. A.
,
Laing
,
C. R.
, and
Strogatz
,
S. H.
, “
Solvable model of spiral wave chimeras
,”
Phys. Rev. Lett.
104
,
044101
(
2010
).
16.
Marvel
,
S. A.
and
Strogatz
,
S. H.
, “
Invariant submanifold for series arrays of Josephson junctions
,”
Chaos
19
,
013132
(
2009
).
17.
Motter
,
A. E.
, “
News and views: Spontaneous symmetry breaking
,”
Nat. Phys.
6
,
164
(
2010
).
18.
Omel’chenko
,
O. E.
,
Maistrenko
,
Y. L.
, and
Tass
,
P. A.
, “
Chimera states: The natural link between coherence and incoherence
,”
Phys. Rev. Lett.
100
,
044105
(
2008
).
19.
Ott
,
E.
and
Antonsen
,
T. M.
, “
Long time evolution of phase oscillator systems
,”
Chaos
19
,
023117
(
2009
).
20.
Ott
,
E.
and
Antonsen
,
T. M.
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
037113
(
2008
).
21.
Pikovsky
,
A.
and
Rosenblum
,
M.
, “
Partially integrable dynamics of hierarchical populations of coupled oscillators
,”
Phys. Rev. Lett.
101
,
264103
(
2008
).
22.
Pikovsky
,
A.
,
Rosenblum
,
M.
, and
Kurths
,
J.
,
Synchronization: A Universal Concept in Nonlinear Sciences
,
Cambridge Nonlinear Science Series
Vol.
12
(
Cambridge University Press
,
Cambridge, UK
,
2001
).
23.
Sethia
,
G. C.
,
Sen
,
A.
, and
Atay
,
F. M.
, “
Clustered chimera states in delay-coupled oscillator systems
,”
Phys. Rev. Lett.
100
,
144102
(
2008
).
24.
Shima
,
S.
and
Kuramoto
,
Y.
, “
Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators
,”
Phys. Rev. E
69
,
036213
(
2004
).
25.
Strogatz
,
S. H.
,
Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life
(
Hyperion
,
New York
,
2004
).
26.
Watanabe
,
S.
and
Strogatz
,
S. H.
, “
Constants of motion for superconducting Josephson arrays
,”
Physica D
74
,
197
(
1994
).
27.
Wiesenfeld
,
K.
,
Colet
,
P.
, and
Strogatz
,
S. H.
, “
Synchronization transitions in a disordered Josephson series array
,”
Phys. Rev. Lett.
76
,
404
(
1996
).
You do not currently have access to this content.