In this paper, the dynamics near a 2:3 resonant Hopf-Hopf bifurcation is studied. The main result is the identification of a distinctive structure connecting 1:2 and 1:3 strong resonances of limit cycles. This structure is found near the Hopf-Hopf point revealing that it may be associated to the resonant case, and may provide useful information about the dynamics generated by this codimension 3 bifurcation.

1.
K. B.
Hilger
and
D. S.
Luciani
, “
Forced oscillators: A detailed numerical analysis
,” M.S. thesis,
Technical University of Denmark
,
1998
.
2.
F. O. O.
Wagener
, “
Semi-local analysis of the k:1 and k:2 resonances in quasi-periodically forced systems
,” in
Global Analysis of Dynamical Systems, Festschrift Dedicated to Floris Takens for His 60th Birthday
, edited by
H. W.
Broer
,
B.
Krauskopf
, and
G.
Vegter
(
Institute of Physics
,
Bristol
,
2001
), pp.
113
129
.
3.
H. W.
Broer
,
R.
van Dijk
, and
R.
Vitolo
, “
Survey of strong normal-internal k:1 resonances in quasi-periodically driven oscillators for l=1,2,3
,” in
Proceedings of the International Conference on SPT 2007
, edited by
G.
Gaeta
,
R.
Vitolo
, and
S.
Walcher
(
World Scientific
,
Otranto, Italy
,
2007
), pp.
45
55
.
4.
H. W.
Broer
,
V.
Naudot
,
R.
Roussarie
,
K.
Saleh
, and
F. O. O.
Wagener
, “
Organising centres in the semi-global analysis of dynamical systems
,”
Int. J. Appl. Math. Stat.
12
,
7
(
2007
).
5.
P.
Yu
, “
Analysis on double Hopf bifurcation using computer algebra with the aid of multiple scales
,”
Nonlinear Dyn.
27
,
19
(
2002
).
6.
P. A.
Chamara
and
B. D.
Coller
, “
A study of double flutter
,”
J. Fluids Struct.
19
,
863
(
2004
).
7.
J.
Xie
and
W.
Ding
, “
Hopf-Hopf bifurcation and invariant torus T2 of a vibro-impact system
,”
Int. J. Non-Linear Mech.
40
,
531
(
2005
).
8.
G.
Revel
,
D. M.
Alonso
, and
J. L.
Moiola
, “
A gallery of oscillations in a resonant electric circuit: Hopf-Hopf and fold-flip interactions
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
18
,
481
(
2008
).
9.
S.
Ma
,
Q.
Lu
, and
Z.
Feng
, “
Double Hopf bifurcation for van der Pol-Duffing oscillator with parametric delay feedback control
,”
J. Math. Anal. Appl.
338
,
993
(
2008
).
10.
A.
Sterk
,
R.
Vitolo
,
H.
Broer
,
C.
Simó
, and
H.
Dijkstra
, “
New nonlinear mechanisms of midlatitude atmospheric low-frequency variability
,”
Physica D
239
,
702
(
2010
).
11.
Y. A.
Kuznetsov
,
Elements of Applied Bifurcation Theory
, 3rd ed. (
Springer-Verlag
,
New York
,
2004
).
12.
S.
Chow
,
C.
Li
, and
D.
Wang
,
Normal Forms and Bifurcation of Planar Vector Fields
(
Cambridge University Press
,
Cambridge, England
,
1994
).
13.
S. A.
van Gils
,
M.
Krupa
, and
W. F.
Langford
, “
Hopf bifurcation with non-semisimple 1:1 resonance
,”
Nonlinearity
3
,
825
(
1990
).
14.
N. S.
Namachchivaya
,
M. M.
Doyle
,
W. F.
Langford
, and
N. W.
Evans
, “
Normal form for generalized Hopf bifurcation with non-semisimple 1:1 resonance
,”
Z. Angew. Math. Phys.
45
,
312
(
1994
).
15.
E.
Knobloch
and
M. R. E.
Proctor
, “
The double Hopf bifurcation with 2:1 resonance
,”
Proc. R. Soc. London
A415
,
61
(
1988
).
16.
V. G.
LeBlanc
and
W. F.
Langford
, “
Classification and unfoldings of 1:2 resonant Hopf bifurcation
,”
Arch. Ration. Mech. Anal.
136
,
305
(
1996
).
17.
S. A.
Campbell
,
J.
Bélair
,
T.
Ohira
, and
J.
Milton
, “
Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback
,”
Chaos
5
,
640
(
1995
).
18.
S. A.
Campbell
and
V. G.
LeBlanc
, “
Resonant Hopf-Hopf interactions in delay differential equations
,”
J. Dyn. Differ. Equ.
10
,
327
(
1998
).
19.
J.
Xu
and
K. W.
Chung
, “
Double Hopf bifurcation with strong resonances in delayed systems with nonlinearities
,”
Math. Probl. Eng.
2009
,
759363
(
2009
).
20.
V. G.
LeBlanc
, “
On some secondary bifurcations near resonant Hopf-Hopf interactions
,”
Dyn. Contin. Discr. Imp. Syst.: Ser. B: App. Algorithms
7
,
405
(
2000
).
21.
B.
Krauskopf
, “
Bifurcation sequences at 1:4 resonance: An inventory
,”
Nonlinearity
7
,
1073
(
1994
).
22.
B.
Krauskopf
, “
Strong resonances and Takens’ Utrecht preprint
,” in
Global Analysis of Dynamical Systems, Festschrift Dedicated to Floris Takens for His 60th Birthday
, edited by
H. W.
Broer
,
B.
Krauskopf
, and
G.
Vegter
(
Institute of Physics
,
Bristol
,
2001
), pp.
89
111
.
23.
A.
Luongo
,
A.
Paolone
, and
A.
Di Egidio
, “
Multiple timescales analysis for 1:2 and 1:3 resonant Hopf bifurcations
,”
Nonlinear Dyn.
34
,
269
(
2003
).
24.
B. B.
Peckham
and
I. G.
Kevrekidis
, “
Lighting Arnold flames: Resonance in doubly forced periodic oscillators
,”
Nonlinearity
15
,
405
(
2002
).
25.
G. R.
Itovich
and
J. L.
Moiola
, “
Double Hopf bifurcation analysis using frequency domain methods
,”
Nonlinear Dyn.
39
,
235
(
2005
).
26.
W. J. F.
Govaerts
,
Numerical Methods for Bifurcations of Dynamical Equilibria
(
SIAM
,
Philadelphia
,
2000
).
27.
A.
Dhooge
,
W.
Govaerts
,
Y. A.
Kuznetsov
,
W.
Mestrom
,
A. M.
Riet
, and
B.
Sautois
, “
MATCONT and CL-MATCONT continuation toolboxes in MATLAB
,” User Manual, Gent University and Utrech University,
2006
.
28.
F.
Schilder
,
H. M.
Osinga
, and
W.
Vogt
, “
Continuation of quasi-periodic invariant tori
,”
SIAM J. Appl. Dyn. Syst.
4
,
459
(
2005
).
You do not currently have access to this content.