Owed to their reduced size and low number of proteins encoded, RNA viruses and other subviral pathogens are often considered as being genetically too simple. However, this structural simplicity also creates the necessity for viral RNA sequences to encode for more than one protein and for proteins to carry out multiple functions, all together resulting in complex patterns of genetic interactions. In this work we will first review the experimental studies revealing that the architecture of viral genomes is dominated by antagonistic interactions among loci. Second, we will also review mathematical models and provide a description of computational tools for the study of RNA virus dynamics and evolution. As an application of these tools, we will finish this review article by analyzing a stochastic bit-string model of in silico virus replication. This model analyzes the interplay between epistasis and the mode of replication on determining the population load of deleterious mutations. The model suggests that, for a given mutation rate, the deleterious mutational load is always larger when epistasis is predominantly antagonistic than when synergism is the rule. However, the magnitude of this effect is larger if replication occurs geometrically than if it proceeds linearly.

1.
E.
Domingo
,
R. A.
Flavell
, and
C.
Weissman
,
Gene
1
,
3
(
1976
).
2.
E.
Domingo
,
D.
Sabo
,
T.
Taniguchi
, and
C.
Weissmann
,
Cell
13
,
735
(
1978
).
3.
M.
Eigen
,
Naturwiss.
58
,
465
(
1971
).
4.
E.
Domingo
,
V.
Martin
,
C.
Perales
,
A.
Grande-Pérez
,
J.
García-Arriaza
, and
A.
Arias
,
Curr. Top. Microbiol. Immunol.
299
,
51
(
2006
).
5.
E. C.
Holmes
and
A.
Moya
,
J. Virol.
76
,
460
(
2002
).
6.
C. O.
Wilke
,
BMC Evol. Biol.
5
,
44
(
2005
).
7.
J. A. G. M.
de Visser
and
S. F.
Elena
,
Nat. Rev. Genet.
8
,
139
(
2007
).
8.
S. F.
Elena
,
J. Mol. Evol.
49
,
703
(
1999
).
9.
S.
Bonhoeffer
,
C.
Chappey
,
N. T.
Parkin
,
J. M.
Whitcomb
, and
C. J.
Petropoloulos
,
Science
306
,
1547
(
2004
).
10.
S. A.
Kauffman
,
Curr. Top Dev. Biol.
6
,
145
(
1971
).
11.
S. A.
Kauffman
and
S.
Levin
,
J. Theor. Biol.
128
,
11
(
1987
).
12.
R. E.
Lenski
,
C.
Ofria
,
T. C.
Collier
,
R. T.
Pennock
, and
C.
Adami
,
Nature (London)
400
,
661
(
1999
).
13.
R. E.
Lenski
,
C.
Ofria
,
R. T.
Pennock
, and
C.
Adami
,
Nature (London)
423
,
139
(
2003
).
14.
A.
Molla
,
M.
Korneyeva
,
Q.
Gao
,
S.
Vasavanonda
,
P. J.
Schipper
,
H. M.
Mo
,
M.
Markowitz
,
T.
Chernyavskiy
,
P.
Nium
,
N.
Lyons
,
A.
Hsu
,
G. R.
Granneman
,
D. D.
Ho
,
C. A. B.
Boucher
,
J. M.
Leonard
,
D. W.
Norbeck
, and
D. J.
Kempf
,
Nat. Med.
2
,
760
(
1996
).
15.
M.
Nijhuis
,
R.
Schuurman
,
D.
De Jong
,
J.
Erickson
,
E.
Gustchina
,
J.
Albert
,
P.
Schipper
,
S.
Gulnik
, and
C. A. B.
Boucher
,
AIDS
13
,
2349
(
1999
).
16.
J.
Martinez-Picado
and
M. A.
Martínez
,
Virus Res.
134
,
104
(
2008
).
17.
A.
Handel
,
R. R.
Regoes
, and
R.
Antia
,
PLOS Comput. Biol.
2
,
e137
(
2006
).
18.
J. J.
Bull
,
M. R.
Badget
,
H. A.
Wichman
,
J. P.
Huelsenbeck
,
D. M.
Hillis
,
A.
Gulati
,
C.
Ho
, and
I. J.
Molineux
,
Genetics
147
,
1497
(
1997
).
19.
H. A.
Wichman
,
M. R.
Badgett
,
L. A.
Scott
,
C. M.
Boulianne
, and
J. J.
Bull
,
Science
285
,
422
(
1999
).
20.
J. M.
Cuevas
,
S. F.
Elena
, and
A.
Moya
,
Genetics
162
,
533
(
2002
).
21.
P.
Rico
,
P.
Ivars
,
S. F.
Elena
, and
C.
Hernández
,
J. Virol.
80
,
8124
(
2006
).
22.
B.
Shapiro
,
A.
Rambaut
,
O. G.
Pybus
, and
E. C.
Holmes
,
Mol. Biol. Evol.
23
,
1724
(
2006
).
23.
C.
Escarmís
,
M.
Dávila
,
N.
Charpentier
,
A.
Bracho
,
A.
Moya
, and
E.
Domingo
,
J. Mol. Biol.
264
,
255
(
1996
).
24.
C. L.
Burch
,
P. E.
Turner
, and
K. A.
Hanley
,
J. Evol. Biol.
16
,
1223
(
2003
).
25.
C. L.
Burch
and
L.
Chao
,
Genetics
167
,
559
(
2004
).
26.
F.
de la Iglesia
and
S. F.
Elena
,
J. Virol.
81
,
4941
(
2007
).
27.
R.
Sanjuán
,
A.
Moya
, and
S. F.
Elena
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
15376
(
2004
).
28.
T.
van Opijnen
,
M. C.
Boerlijst
, and
B.
Berkhout
,
J. Virol.
80
,
6678
(
2006
).
29.
M.
Parera
,
N.
Perez-Alvarez
,
B.
Clotet
, and
M. A.
Martínez
,
J. Mol. Biol.
392
,
243
(
2009
).
30.
K.
Wang
,
J. E.
Mittler
, and
R.
Samudrala
,
Science
312
,
848
(
2006
).
31.
R.
Sanjuán
,
J. Gen. Virol.
87
,
1595
(
2006
).
32.
R.
Sanjuán
,
J.
Forment
, and
S. F.
Elena
,
Mol. Biol. Evol.
23
,
2123
(
2006
).
33.
R.
Sanjuán
,
J. M.
Cuevas
,
A.
Moya
, and
S. F.
Elena
,
Genetics
170
,
1001
(
2005
).
34.
A. S.
Kondrashov
,
Nature (London)
336
,
435
(
1988
).
35.
R. B. R.
Azevedo
,
R.
Lohaus
,
S.
Srinivasan
,
K. K.
Dang
, and
C. L.
Burch
,
Nature (London)
440
,
87
(
2006
).
36.
T.
MacCarthy
and
A.
Bergman
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
12801
(
2007
).
37.
S. P.
Otto
and
M. W.
Feldman
,
Theor Popul. Biol.
51
,
134
(
1997
).
38.
J. A.
Edlund
and
C.
Adami
,
Artif. Life
10
,
167
(
2004
).
39.
C. O.
Wilke
and
C.
Adami
,
Proc. R. Soc. London, Ser. B
298
,
1469
(
2001
).
40.
C. O.
Wilke
,
R. E.
Lenski
, and
C.
Adami
,
BMC Evol. Biol.
3
,
3
(
2003
).
41.
L.
You
and
J.
Yin
,
Genetics
160
,
1273
(
2002
).
42.
S. F.
Elena
,
P.
Carrasco
,
J. A.
Darós
, and
R.
Sanjuán
,
EMBO Rep.
7
,
168
(
2006
).
43.
C. O.
Wilke
,
Bull. Math. Biol.
63
,
715
(
2001
).
44.
P.
Schuster
and
J.
Swetina
,
Bull. Math. Biol.
50
,
635
(
1988
).
45.
M. A.
Nowak
and
R.
May
,
Virus Dynamics: Mathematical Principles of Immunology and Virology
(
Oxford University Press
,
Oxford, UK
,
2000
).
46.
D. C.
Krakauer
and
N. L.
Komarova
,
J. Evol. Biol.
16
,
64
(
2003
).
47.
V. P.
Zhdanov
,
J. Phys. A
37
,
L63
(
2004
).
48.
J.
Sardanyés
,
R. V.
Solé
, and
S. F.
Elena
,
J. Virol.
83
,
12579
(
2009
).
49.
R. B.
Schinazi
,
J. Stat. Phys.
128
,
771
(
2007
).
50.
J.
Sardanyés
,
R. V.
Solé
, and
S. F.
Elena
,
J. Theor. Biol.
250
,
560
(
2008
).
51.
I.
Leuthäusser
,
J. Chem. Phys.
84
,
1884
(
1986
).
52.
I.
Leuthäusser
,
J. Stat. Phys.
48
,
343
(
1987
).
53.
J.
Swetina
and
P.
Schuster
,
Biophys. Chem.
16
,
329
(
1982
).
54.
K.
Jain
and
J.
Krug
,
Structural Approaches to Sequence Evolution: Molecules, Networks, Populations
(
Springer-Verlag
,
Berlin
,
2007
).
55.
R. V.
Solé
,
J.
Sardanyés
,
J.
Diez
, and
A.
Mas
,
J. Theor. Biol.
240
,
353
(
2006
).
56.
D.
Denhardt
and
R. B.
Silver
,
Virology
30
,
10
(
1966
).
57.
S. E.
Luria
,
Cold Spring Harbor Symp. Quant. Biol.
16
,
1505
(
1951
).
58.
L.
Chao
,
C. U.
Rang
, and
L. E.
Wong
,
J. Virol.
76
,
3276
(
2002
).
59.
D. C.
Krakauer
and
J. B.
Plotkin
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
1405
(
2002
).
60.
M.
Lynch
,
R.
Bürguer
,
D.
Butcher
, and
W.
Gabriel
,
J. Hered
84
,
339
(
1993
).
61.
M.
Lynch
,
J. S.
Conery
, and
R.
Bürguer
,
Am. Nat.
146
,
489
(
1995
).
62.
J. A. G. M.
de Visser
,
J.
Hermisson
,
G. P.
Wagner
,
L.
Ancel Meyers
,
H.
Bagheri-Chaichian
,
J. L.
Blanchard
,
L.
Chao
,
J. M.
Cheverud
,
S. F.
Elena
,
W.
Fontana
,
G.
Gibson
,
T. F.
Hansen
,
D.
Krakauer
,
R. C.
Lewontin
,
C.
Ofria
,
S. H.
Rice
,
G.
von Dassow
,
A.
Wagner
, and
M. C.
Whitlock
,
Evolution (Lawrence, Kans.)
57
,
1959
(
2003
).
63.
S. F.
Elena
and
R.
Sanjuán
,
BMC Evol. Biol.
8
,
284
(
2008
).
64.
J. A.
Draghi
,
T. L.
Parsons
,
W. P.
Wagner
, and
J. B.
Plotkin
,
Nature (London)
463
,
353
(
2010
).
65.
R.
Sanjuán
and
S. F.
Elena
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
14402
(
2006
).
66.
S. A.
Kauffman
, “
The structure of rugged fitness landscapes
,” in
The Origins of Order. Self-organization and Selection in Evolution
(
Oxford University Press
,
New York
,
1993
).
67.
F. M.
Codoñer
,
J. A.
Darós
,
R. V.
Solé
, and
S. F.
Elena
,
PLoS Pathog.
2
(12),
e136
(
2006
).
You do not currently have access to this content.