The Gallavotti–Cohen fluctuation theorem (FT) implies an infinite set of identities between correlation functions that can be seen as a generalization of Green–Kubo formula to the nonlinear regime. As an application, we discuss a perturbative check of the FT relation through these identities for a simple Anosov reversible system; we find that the lack of differentiability of the time reversal operator implies a violation of the Gallavotti–Cohen fluctuation relation. Finally, a brief comparison to Lebowitz–Spohn FT is reported.
REFERENCES
1.
G.
Gallavotti
, Scholarpedia J.
3
, 5906
(2008
).2.
G.
Gallavotti
, F.
Bonetto
, and G.
Gentile
, Aspects of the Ergodic, Qualitative and Statistical Theory of Motion
(Springer-Verlag
, Berlin
, 2003
).3.
G.
Gallavotti
and E. G. D.
Cohen
, Phys. Rev. Lett.
74
, 2694
(1995
).4.
G.
Gallavotti
, Scholarpedia J.
3
, 5904
(2008
).5.
D.
Ruelle
, Commun. Math. Phys.
187
, 227
(1997
).6.
D.
Ruelle
, Commun. Math. Phys.
234
, 185
(2003
).7.
D.
Ruelle
, Nonlinearity
22
, 855
(2009
).8.
D. J.
Evans
, E. G. D.
Cohen
, and G. P.
Morriss
, Phys. Rev. Lett.
71
, 2401
(1993
).9.
F.
Zamponi
, J. Stat. Mech.: Theory Exp.
2007
, P02008
.10.
M. M.
Bandi
, J. R.
Cressman
, Jr., and W. I.
Goldburg
, J. Stat. Phys.
130
, 27
(2008
).11.
B.
Cessac
and J. -A.
Sepulchre
, Physica D
225
, 13
(2007
).12.
B.
Cessac
, Nonlinearity
20
, 2883
(2007
).13.
H.
Touchette
, Phys. Rep.
478
, 1
(2009
).14.
G.
Gallavotti
, Phys. Rev. Lett.
77
, 4334
(1996
).15.
J.
Lebowitz
and H.
Spohn
, J. Stat. Phys.
95
, 333
(1999
).16.
D.
Andrieux
and P.
Gaspard
, J. Stat. Mech.: Theory Exp.
2007
, P02006
.17.
M.
Porta
, “Studio della misura di Sinai–Ruelle–Bowen in un sistema semplice
,” M.S. thesis, University of Rome “La Sapienza”
, 2007
;e-print arXiv:cond-mat/1002.1698.
18.
Y. G.
Sinai
, Russ. Math. Surveys
27
, 21
(1972
);R.
Bowen
, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
, Lecture Notes in Mathematics
, Vol. 470
(Springer-Verlag
, Berlin
, 1975
).19.
G.
Gentile
, Forum Math.
10
, 89
(1998
).20.
G.
Gallavotti
, Eur. Phys. J. B
61
, 1
(2008
).21.
22.
23.
24.
F.
Bonetto
and G.
Gallavotti
, Commun. Math. Phys.
189
, 263
(1997
).25.
F.
Bonetto
, G.
Gallavotti
, and P. L.
Garrido
, Physica D
105
, 226
(1997
).26.
C.
Maes
, J. Stat. Phys.
95
, 367
(1999
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.