A method of estimating the Kolmogorov–Sinai (KS) entropy, herein referred to as the modified correlation entropy, is presented. The method can be applied to both noise-free and noisy chaotic time series. It has been applied to some clean and noisy data sets and the numerical results show that the modified correlation entropy is closer to the KS entropy of the nonlinear system calculated by the Lyapunov spectrum than the general correlation entropy. Moreover, the modified correlation entropy is more robust to noise than the correlation entropy.

1.
Adler
,
R. L.
,
Konheim
,
A. G.
, and
McAndrew
,
M. H.
, “
Topological entropy
,”
Trans. Am. Math. Soc.
114
,
309
319
(
1965
).
2.
Bonachela
,
J. A.
,
Hinrichsen
,
H.
, and
Munoz
,
M.
, “
Entropy estimations of small data set
,”
J. Phys. A: Math. Theor.
41
,
202001
(
2008
).
3.
Brown
,
R.
,
Bryant
,
P.
, and
Abarbanel
,
H. D.
, “
Computing the Lyapunov spectrum of a dynamical system from an observed time series
,”
Phys. Rev. A
43
,
2787
2806
(
1991
).
4.
Diks
,
C.
,
Nonlinear Time Series Analysis, Methods and Applications
(
World Scientific
,
Singapore
,
1999
).
5.
Frank
,
M.
,
Blank
,
H. -R.
,
Heindl
,
J.
,
Kaltenhauser
,
M.
,
Kochner
,
H.
,
Kreissche
,
W.
,
Muller
,
N.
,
Pocher
,
S.
,
Sporer
,
R.
, and
Wagner
,
T.
, “
Improvement of K2 entropy calculations by means of dimension scaled distances
,”
Physica D
65
,
359
364
(
1993
).
6.
Grassberger
,
P.
,
Hegger
,
R.
,
Kantz
,
H.
,
Schaffrath
,
C.
, and
Schreiber
,
T.
, “
On noise reduction methods for chaotic data
,”
Chaos
3
,
127
141
(
1993
).
7.
Grassberger
,
P.
and
Procaccia
,
I.
, “
Estimation of the Kolmogorov entropy from a chaotic signal
,”
Phys. Rev. A
28
,
2591
2593
(
1983
).
8.
Jayawardena
,
A. W.
and
Gurung
,
A. B.
, “
Noise reduction and prediction of hydrometeorological time series: Dynamical systems approach vs. stochastic approach
,”
J. Hydrol.
228
,
242
(
2000
).
9.
Jayawardena
,
A. W.
,
Li
,
W. K.
, and
Xu
,
P.
, “
Neighbourhood selection for local modeling and prediction of hydrological time series
,”
J. Hydrol.
258
,
40
57
(
2002
).
10.
Jayawardena
,
A. W.
,
Xu
,
P. C.
, and
Li
,
W. K.
, “
A method of estimating the noise level in a chaotic time series
,”
Chaos
18
,
023115
(
2008
).
11.
Kantz
,
H.
and
Schreiber
,
T.
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
Cambridge, England
,
2003
).
12.
Kantz
,
H.
and
Schürmann
,
T.
, “
Enlarger scaling ranges for the KS-entropy and information dimension
,”
Chaos
6
,
167
171
(
1996
).
13.
Kolmogorov
,
A. N.
, “
A new invariant of transitive dynamical systems
,”
Dokl. Akad. Nauk SSSR
119
,
861
864
(
1958
).
14.
Lorenz
,
E. N.
, “
Deterministic non-periodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
15.
Oltmans
,
H.
and
Verheijen
,
P. J. T.
, “
Influence of noise on power-law scaling functions and an algorithm for dimension estimations
,”
Phys. Rev. E
56
,
1160
1170
(
1997
).
16.
Pesin
,
Y. B.
, “
Characteristic Lyapunov exponents and smooth ergodic theory
,”
Russ. Math. Surveys
32
,
55
112
(
1977
).
17.
Ramsey
,
J. B.
and
Yuan
,
H. J.
, “
The statistical properties of dimension calculations using small data sets
,”
Nonlinearity
3
,
155
176
(
1990
).
18.
Renyi
,
A.
,
Probability Theory
(
North-Holland
,
Amsterdam
,
1971
).
19.
Rössler
,
O. E.
, “
An equation for continuous chaos
,”
Phys. Lett.
57A
,
397
398
(
1976
).
20.
Schreiber
,
T.
and
Grassberger
,
P.
, “
A simple noise-reduction method for real data
,”
Phys. Lett. A
160
,
411
418
(
1991
).
21.
Schürmann
,
T.
and
Grassberger
,
P.
, “
Entropy estimation of symbol sequences
,”
Chaos
6
,
414
427
(
1996
).
22.
Shannon
,
C. E.
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
379
423
and 623–656 (
1948
).
23.
Sinai
,
A. G.
, “
On the concept of entropy of a dynamical system
,”
Dokl. Akad. Nauk SSSR
142
,
768
776
(
1959
).
24.
Takens
,
F.
, “
Detecting strange attractors in turbulence
,”
Lect. Notes Math.
898
,
366
381
(
1981
).
25.
Weaver
,
W.
and
Shannon
,
C. E.
,
The Mathematical Theory of Communication
(
University of Illinois Press
,
Urbana, IL
,
1949
).
You do not currently have access to this content.