A method of estimating the Kolmogorov–Sinai (KS) entropy, herein referred to as the modified correlation entropy, is presented. The method can be applied to both noise-free and noisy chaotic time series. It has been applied to some clean and noisy data sets and the numerical results show that the modified correlation entropy is closer to the KS entropy of the nonlinear system calculated by the Lyapunov spectrum than the general correlation entropy. Moreover, the modified correlation entropy is more robust to noise than the correlation entropy.
REFERENCES
1.
Adler
, R. L.
, Konheim
, A. G.
, and McAndrew
, M. H.
, “Topological entropy
,” Trans. Am. Math. Soc.
114
, 309
–319
(1965
).2.
Bonachela
, J. A.
, Hinrichsen
, H.
, and Munoz
, M.
, “Entropy estimations of small data set
,” J. Phys. A: Math. Theor.
41
, 202001
(2008
).3.
Brown
, R.
, Bryant
, P.
, and Abarbanel
, H. D.
, “Computing the Lyapunov spectrum of a dynamical system from an observed time series
,” Phys. Rev. A
43
, 2787
–2806
(1991
).4.
Diks
, C.
, Nonlinear Time Series Analysis, Methods and Applications
(World Scientific
, Singapore
, 1999
).5.
Frank
, M.
, Blank
, H. -R.
, Heindl
, J.
, Kaltenhauser
, M.
, Kochner
, H.
, Kreissche
, W.
, Muller
, N.
, Pocher
, S.
, Sporer
, R.
, and Wagner
, T.
, “Improvement of entropy calculations by means of dimension scaled distances
,” Physica D
65
, 359
–364
(1993
).6.
Grassberger
, P.
, Hegger
, R.
, Kantz
, H.
, Schaffrath
, C.
, and Schreiber
, T.
, “On noise reduction methods for chaotic data
,” Chaos
3
, 127
–141
(1993
).7.
Grassberger
, P.
and Procaccia
, I.
, “Estimation of the Kolmogorov entropy from a chaotic signal
,” Phys. Rev. A
28
, 2591
–2593
(1983
).8.
Jayawardena
, A. W.
and Gurung
, A. B.
, “Noise reduction and prediction of hydrometeorological time series: Dynamical systems approach vs. stochastic approach
,” J. Hydrol.
228
, 242
(2000
).9.
Jayawardena
, A. W.
, Li
, W. K.
, and Xu
, P.
, “Neighbourhood selection for local modeling and prediction of hydrological time series
,” J. Hydrol.
258
, 40
–57
(2002
).10.
Jayawardena
, A. W.
, Xu
, P. C.
, and Li
, W. K.
, “A method of estimating the noise level in a chaotic time series
,” Chaos
18
, 023115
(2008
).11.
Kantz
, H.
and Schreiber
, T.
, Nonlinear Time Series Analysis
(Cambridge University Press
, Cambridge, England
, 2003
).12.
Kantz
, H.
and Schürmann
, T.
, “Enlarger scaling ranges for the KS-entropy and information dimension
,” Chaos
6
, 167
–171
(1996
).13.
Kolmogorov
, A. N.
, “A new invariant of transitive dynamical systems
,” Dokl. Akad. Nauk SSSR
119
, 861
–864
(1958
).14.
Lorenz
, E. N.
, “Deterministic non-periodic flow
,” J. Atmos. Sci.
20
, 130
–141
(1963
).15.
Oltmans
, H.
and Verheijen
, P. J. T.
, “Influence of noise on power-law scaling functions and an algorithm for dimension estimations
,” Phys. Rev. E
56
, 1160
–1170
(1997
).16.
Pesin
, Y. B.
, “Characteristic Lyapunov exponents and smooth ergodic theory
,” Russ. Math. Surveys
32
, 55
–112
(1977
).17.
Ramsey
, J. B.
and Yuan
, H. J.
, “The statistical properties of dimension calculations using small data sets
,” Nonlinearity
3
, 155
–176
(1990
).18.
19.
20.
Schreiber
, T.
and Grassberger
, P.
, “A simple noise-reduction method for real data
,” Phys. Lett. A
160
, 411
–418
(1991
).21.
Schürmann
, T.
and Grassberger
, P.
, “Entropy estimation of symbol sequences
,” Chaos
6
, 414
–427
(1996
).22.
Shannon
, C. E.
, “A mathematical theory of communication
,” Bell Syst. Tech. J.
27
, 379
–423
and 623–656 (1948
).23.
Sinai
, A. G.
, “On the concept of entropy of a dynamical system
,” Dokl. Akad. Nauk SSSR
142
, 768
–776
(1959
).24.
Takens
, F.
, “Detecting strange attractors in turbulence
,” Lect. Notes Math.
898
, 366
–381
(1981
).25.
Weaver
, W.
and Shannon
, C. E.
, The Mathematical Theory of Communication
(University of Illinois Press
, Urbana, IL
, 1949
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.