We use direct Lyapunov exponents to identify Lagrangian coherent structures (LCSs) in a bioinspired fluid flow: the wakes of rigid pitching panels with a trapezoidal planform geometry chosen to model idealized fish caudal fins. When compared with commonly used Eulerian criteria, the Lagrangian method has previously exhibited the ability to define structure boundaries without relying on a preselected threshold. In addition, qualitative changes in the LCS have previously been shown to correspond to physical changes in the vortex structure. For this paper, digital particle image velocimetry experiments were performed to obtain the time-resolved velocity fields for Strouhal numbers of 0.17 and 0.27. A classic reverse von Kármán vortex street pattern was observed along the midspan of the near wake at low Strouhal number, but at higher Strouhal number the complexity of the wake increased downstream of the trailing edge. The spanwise vortices spread transversely across the wake and lose coherence, and this event was shown to correspond to a qualitative change in the LCS at the same time and location.

1.
J. C. R.
Hunt
,
A. A.
Wray
, and
P.
Moin
,
Center for Turbulence Research
Report No. CTR-S88,
1988
.
2.
J.
Zhou
,
R. J.
Adrian
,
S.
Balachandar
, and
T. M.
Kendall
,
J. Fluid Mech.
387
,
353
(
1999
).
3.
M. S.
Chong
,
A. E.
Perry
, and
B. J.
Cantwell
,
Phys. Fluids A
2
,
765
(
1990
).
4.
J.
Jeong
and
F.
Hussein
,
J. Fluid Mech.
285
,
69
(
1995
).
6.
G.
Haller
,
Phys. Fluids
14
,
1851
(
2002
).
7.
F.
Lekien
and
N.
Leonard
,
Dynamically Consistent Lagrangian Coherent Structures
, in
American Inst. of Physics: 8th Experimental Chaos Conference, CP 742
(
American Institute of Physics
,
2004
), pp.
132
139
.
8.
S.
Shadden
,
J.
Dabiri
, and
J.
Marsden
,
Phys. Fluids
18
,
047105
(
2006
).
9.
S. C.
Shadden
,
K.
Katija
,
M.
Rosenfeld
,
J. E.
Marsden
, and
J. O.
Dabiri
,
J. Fluid Mech.
593
,
315
(
2007
).
10.
G.
Haller
and
G.
Yuan
,
Physica D
147
,
352
(
2000
).
11.
T. Y.
Koh
and
B.
Legras
,
Chaos
12
,
382
(
2002
).
13.
G. A.
Voth
,
G.
Haller
, and
J. P.
Gollub
,
Phys. Rev. Lett.
88
,
254501
(
2002
).
14.
D.
Lipinski
,
B.
Cardwell
, and
K.
Mohseni
,
J. Phys. A: Math. Theor.
41
,
344011
(
2008
).
15.
S. C.
Shadden
and
C. A.
Taylor
,
Ann. Biomed. Eng.
36
,
1152
(
2008
).
16.
M. A.
Green
,
C. W.
Rowley
, and
G.
Haller
,
J. Fluid Mech.
572
,
111
(
2007
).
17.
M. M.
Koochesfahani
,
AIAA J.
27
,
1200
(
1989
).
18.
C. H. K.
Williamson
and
A.
Roshko
,
J. Fluids Struct.
2
,
355
(
1988
).
19.
G.
Triantafyllou
,
M.
Triantafyllou
, and
M.
Grosenbaugh
,
J. Fluids Struct.
7
,
205
(
1993
).
20.
K. D.
von Ellenrieder
,
K.
Parker
, and
J.
Soria
,
J. Fluid Mech.
490
,
129
(
2003
).
21.
L.
Guglielmini
, Ph.D. thesis,
University of Genoa
,
2004
.
22.
H.
Dong
,
R.
Mittal
,
M.
Bozhurttas
, and
F.
Najjar
,
AIAA J.
81
,
1
(
2005
).
23.
R.
Govardhan
and
C. H. K.
Williamson
,
J. Fluid Mech.
531
,
11
(
2005
).
24.
S.
Sarkar
and
K.
Venkatraman
,
Comput. Fluids
35
,
16
(
2006
).
25.
I.
Borazjani
and
F.
Sotiropoulos
,
J. Exp. Biol.
212
,
576
(
2009
).
26.
Q.
Zhu
and
K.
Shoele
,
J. Exp. Biol.
211
,
2087
(
2008
).
27.
M. A.
Green
and
A. J.
Smits
,
J. Fluid Mech.
615
,
211
(
2008
).
28.
J. H. J.
Buchholz
, Ph.D. thesis,
Princeton University
,
2006
.
29.
J. H. J.
Buchholz
and
A. J.
Smits
,
Phys. Fluids
17
,
091102
(
2005
).
31.
S.
Shadden
,
F.
Lekien
, and
J.
Marsden
,
Physica D
212
,
271
(
2005
).
32.
P. K.
Newton
,
The N-Vortex Problem: Analytical Techniques
,
Applied Mathematical Sciences
Vol.
145
(
Springer
,
New York
,
2001
).
34.
J. H. J.
Buchholz
and
A. J.
Smits
,
J. Fluid Mech.
603
,
331
(
2008
).
35.
J. M.
Jiménez
, M.S. thesis,
Princeton University
,
2002
.
36.
N.
Malhotra
and
S.
Wiggins
,
J. Nonlinear Sci.
8
,
401
(
1998
).
37.
J.
Peng
,
J. O.
Dabiri
,
P. G.
Madden
, and
G. V.
Lauder
,
J. Exp. Biol.
210
,
685
(
2007
).
You do not currently have access to this content.