We implement different methods for the computation of the breakdown threshold of invariant attractors in the dissipative standard mapping. A first approach is based on the computation of the Sobolev norms of the function parametrizing the solution. Then we look for the approximating periodic orbits and we analyze their stability in order to compute the critical threshold at which an invariant attractor breaks down. We also determine the domain of convergence of the dissipative standard mapping by extending the computations to the complex parameter space as well as by investigating a two-frequency model.
REFERENCES
1.
Arnold
, V. I.
, “Small denominators and problems of stability of motion in classical and celestial mechanics
,” Usp. Mat. Nauk
18
, 91
–192
(1963
).2.
Broer
, H. W.
, Huitema
, G. B.
, and Sevryuk
, M. B.
, “Quasi-periodic motions in families of dynamical systems. Order amidst chaos
,” Lecture Notes in Mathematics
(Springer-Verlag
, Berlin
, 1996
), Vol. 1645
.3.
Broer
, H. W.
, Simó
, C.
, and Tatjer
, J. C.
, “Towards global models near homoclinic tangencies of dissipative diffeomorphisms
,” Nonlinearity
11
, 667
–770
(1998
).4.
Calleja
, R.
, “Existence and persistence of invariant objects in dynamical systems and mathematical physics
,” Ph.D. thesis, The University of Texas at Austin
, 2009
.5.
Calleja
, R.
and de la Llave
, R.
, “A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification
” (unpublished).6.
Calleja
, R.
and de la Llave
, R.
, “Computation of the breakdown of analyticity in statistical mechanics models
” (unpublished).7.
Celletti
, A.
and Chierchia
, L.
, “Quasi-periodic attractors in celestial mechanics
,” Arch. Ration. Mech. Anal.
191
, 311
–345
(2009
).8.
Celletti
, A.
and Di Ruzza
, S.
, “Periodic and invariant orbits of the dissipative standard map
” (unpublished).9.
Celletti
, A.
and Falcolini
, C.
, “Singularities of periodic orbits near invariant curves
,” Physica D
170
, 87
–102
(2002
).10.
Celletti
, A.
, Froeschlé
, C.
, and Lega
, E.
, “Dissipative and weakly-dissipative regimes in nearly-integrable mappings
,” Discrete Contin. Dyn. Syst.
16
, 757
–781
(2006
).11.
Celletti
, A.
and MacKay
, R. S.
, “Regions of non-existence of invariant tori for a spin-orbit model
,” Chaos
17
, 043119
(2007
).12.
Chirikov
, B. V.
, “A universal instability of many dimensional oscillator systems
,” Phys. Rep.
52
, 263
–379
(1979
).13.
de Faria
, E.
and de Melo
, W.
, “Rigidity of critical circle mappings. I
,” J. Eur. Math. Soc.
1
, 339
–392
(1999
).14.
de Faria
, E.
and de Melo
, W.
, “Rigidity of critical circle mappings. II
,” J. Am. Math. Soc.
13
, 343
–370
(2000
).15.
Greene
, J.
, “A method for determining the stochastic transition
,” J. Math. Phys.
20
, 1183
–1201
(1979
).16.
Guzzo
, M.
, Bernardi
, O.
, and Cardin
, F.
, “The experimental localization of Aubry–Mather sets using regularization techniques inspired by viscosity theory
,” Chaos
17
, 033107
(2007
).17.
Haro
, A.
and de la Llave
, R.
, “A parametrization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms
,” Discrete Contin. Dyn. Syst., Ser. B
6
, 1261
–1300
(2006
).18.
Katznelson
, Y.
and Ornstein
, D.
, “The absolute continuity of the conjugation of certain diffeomorphisms of the circle
,” Ergod. Theory Dyn. Syst.
9
, 681
–690
(1989
).19.
Koch
, H.
, “Existence of critical invariant tori
,” Ergod. Theory Dyn. Syst.
28
, 1879
–1894
(2008
).20.
Kolmogorov
, A. N.
, “On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian
,” Dokl. Akad. Nauk SSSR
98
, 527
–530
(1954
).21.
Laskar
, J.
, Froeschlé
, C.
, and Celletti
, A.
, “The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping
,” Physica D
56
, 253
–269
(1992
).22.
de la Llave
, R.
, “KAM theory for equilibrium states in 1-D statistical mechanics models
,” Ann. Henri Poincare
9
, 835
–880
(2008
).23.
de la Llave
, R.
and Olvera
, A.
, “The obstruction criterion for non-existence of invariant circles and renormalization
,” Nonlinearity
19
, 1907
–1937
(2006
).24.
de la Llave
, R.
and Petrov
, N. P.
, “Regularity of conjugacies between critical circle maps: An experimental study
,” Exp. Math.
11
, 219
–241
(2002
).25.
MacKay
, R. S.
, “A renormalization approach to invariant circles in area-preserving maps
,” Physica D
7
, 283
–300
(1983
).26.
MacKay
, R. S.
, “Renormalization in area preserving maps
,” Ph.D. thesis, Princeton University
, 1982
.27.
Moser
, J.
, “On invariant curves of area-preserving mappings of an annulus
,” Nachr. Akad. Wiss. Goett. II, Math.-Phys. Kl.
II
, 1
–20
(1962
).28.
Olvera
, A.
and Simó
, C.
, “An obstruction method for the destruction of invariant curves
,” Physica D
26
, 181
–192
(1987
).29.
Salamon
, D. A.
and Zehnder
, E.
, “KAM theory in configuration space
,” Comment. Math. Helv.
64
, 84
–132
(1989
).30.
Yampolsky
, M.
, “Complex bounds for renormalization of critical circle maps
,” Ergod. Theory Dyn. Syst.
19
, 227
–257
(1999
).31.
Zehnder
, E.
, “Generalized implicit function theorems with applications to some small divisor problems. I
,” Commun. Pure Appl. Math.
28
, 91
–140
(1975
).32.
Zehnder
, E.
, “Generalized implicit function theorems with applications to some small divisor problems. II
,” Commun. Pure Appl. Math.
29
, 49
–111
(1976
).© 2010 American Institute of Physics.
2010
American Institute of Physics
You do not currently have access to this content.