We implement different methods for the computation of the breakdown threshold of invariant attractors in the dissipative standard mapping. A first approach is based on the computation of the Sobolev norms of the function parametrizing the solution. Then we look for the approximating periodic orbits and we analyze their stability in order to compute the critical threshold at which an invariant attractor breaks down. We also determine the domain of convergence of the dissipative standard mapping by extending the computations to the complex parameter space as well as by investigating a two-frequency model.

1.
Arnold
,
V. I.
, “
Small denominators and problems of stability of motion in classical and celestial mechanics
,”
Usp. Mat. Nauk
18
,
91
192
(
1963
).
2.
Broer
,
H. W.
,
Huitema
,
G. B.
, and
Sevryuk
,
M. B.
, “
Quasi-periodic motions in families of dynamical systems. Order amidst chaos
,”
Lecture Notes in Mathematics
(
Springer-Verlag
,
Berlin
,
1996
), Vol.
1645
.
3.
Broer
,
H. W.
,
Simó
,
C.
, and
Tatjer
,
J. C.
, “
Towards global models near homoclinic tangencies of dissipative diffeomorphisms
,”
Nonlinearity
11
,
667
770
(
1998
).
4.
Calleja
,
R.
, “
Existence and persistence of invariant objects in dynamical systems and mathematical physics
,” Ph.D. thesis,
The University of Texas at Austin
,
2009
.
5.
Calleja
,
R.
and
de la Llave
,
R.
, “
A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification
” (unpublished).
6.
Calleja
,
R.
and
de la Llave
,
R.
, “
Computation of the breakdown of analyticity in statistical mechanics models
” (unpublished).
7.
Celletti
,
A.
and
Chierchia
,
L.
, “
Quasi-periodic attractors in celestial mechanics
,”
Arch. Ration. Mech. Anal.
191
,
311
345
(
2009
).
8.
Celletti
,
A.
and
Di Ruzza
,
S.
, “
Periodic and invariant orbits of the dissipative standard map
” (unpublished).
9.
Celletti
,
A.
and
Falcolini
,
C.
, “
Singularities of periodic orbits near invariant curves
,”
Physica D
170
,
87
102
(
2002
).
10.
Celletti
,
A.
,
Froeschlé
,
C.
, and
Lega
,
E.
, “
Dissipative and weakly-dissipative regimes in nearly-integrable mappings
,”
Discrete Contin. Dyn. Syst.
16
,
757
781
(
2006
).
11.
Celletti
,
A.
and
MacKay
,
R. S.
, “
Regions of non-existence of invariant tori for a spin-orbit model
,”
Chaos
17
,
043119
(
2007
).
12.
Chirikov
,
B. V.
, “
A universal instability of many dimensional oscillator systems
,”
Phys. Rep.
52
,
263
379
(
1979
).
13.
de Faria
,
E.
and
de Melo
,
W.
, “
Rigidity of critical circle mappings. I
,”
J. Eur. Math. Soc.
1
,
339
392
(
1999
).
14.
de Faria
,
E.
and
de Melo
,
W.
, “
Rigidity of critical circle mappings. II
,”
J. Am. Math. Soc.
13
,
343
370
(
2000
).
15.
Greene
,
J.
, “
A method for determining the stochastic transition
,”
J. Math. Phys.
20
,
1183
1201
(
1979
).
16.
Guzzo
,
M.
,
Bernardi
,
O.
, and
Cardin
,
F.
, “
The experimental localization of Aubry–Mather sets using regularization techniques inspired by viscosity theory
,”
Chaos
17
,
033107
(
2007
).
17.
Haro
,
A.
and
de la Llave
,
R.
, “
A parametrization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms
,”
Discrete Contin. Dyn. Syst., Ser. B
6
,
1261
1300
(
2006
).
18.
Katznelson
,
Y.
and
Ornstein
,
D.
, “
The absolute continuity of the conjugation of certain diffeomorphisms of the circle
,”
Ergod. Theory Dyn. Syst.
9
,
681
690
(
1989
).
19.
Koch
,
H.
, “
Existence of critical invariant tori
,”
Ergod. Theory Dyn. Syst.
28
,
1879
1894
(
2008
).
20.
Kolmogorov
,
A. N.
, “
On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian
,”
Dokl. Akad. Nauk SSSR
98
,
527
530
(
1954
).
21.
Laskar
,
J.
,
Froeschlé
,
C.
, and
Celletti
,
A.
, “
The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping
,”
Physica D
56
,
253
269
(
1992
).
22.
de la Llave
,
R.
, “
KAM theory for equilibrium states in 1-D statistical mechanics models
,”
Ann. Henri Poincare
9
,
835
880
(
2008
).
23.
de la Llave
,
R.
and
Olvera
,
A.
, “
The obstruction criterion for non-existence of invariant circles and renormalization
,”
Nonlinearity
19
,
1907
1937
(
2006
).
24.
de la Llave
,
R.
and
Petrov
,
N. P.
, “
Regularity of conjugacies between critical circle maps: An experimental study
,”
Exp. Math.
11
,
219
241
(
2002
).
25.
MacKay
,
R. S.
, “
A renormalization approach to invariant circles in area-preserving maps
,”
Physica D
7
,
283
300
(
1983
).
26.
MacKay
,
R. S.
, “
Renormalization in area preserving maps
,” Ph.D. thesis,
Princeton University
,
1982
.
27.
Moser
,
J.
, “
On invariant curves of area-preserving mappings of an annulus
,”
Nachr. Akad. Wiss. Goett. II, Math.-Phys. Kl.
II
,
1
20
(
1962
).
28.
Olvera
,
A.
and
Simó
,
C.
, “
An obstruction method for the destruction of invariant curves
,”
Physica D
26
,
181
192
(
1987
).
29.
Salamon
,
D. A.
and
Zehnder
,
E.
, “
KAM theory in configuration space
,”
Comment. Math. Helv.
64
,
84
132
(
1989
).
30.
Yampolsky
,
M.
, “
Complex bounds for renormalization of critical circle maps
,”
Ergod. Theory Dyn. Syst.
19
,
227
257
(
1999
).
31.
Zehnder
,
E.
, “
Generalized implicit function theorems with applications to some small divisor problems. I
,”
Commun. Pure Appl. Math.
28
,
91
140
(
1975
).
32.
Zehnder
,
E.
, “
Generalized implicit function theorems with applications to some small divisor problems. II
,”
Commun. Pure Appl. Math.
29
,
49
111
(
1976
).
You do not currently have access to this content.