A generalized coupled map lattice (CML) model of ecosystem dynamics is presented. We consider the spatiotemporal behavior of a prey–predator map, a model of host–parasitoid interactions, and two‐species competition. The latter model can show phase separation of domains (Turing‐like structures) even when chaos is present. We also use this CML model to explore the time evolution and structural properties of ecological networks built with a set of N competing species. The May–Wigner criterion is applied as a measure of stability, and some regularities in the stable networks observed are discussed.

1.
L. Glass and M. C. Mackey, From clocks to chaos (Princeton University, Princeton, NJ 1988).
2.
C. A.
Skarda
and
W. J.
Freeman
,
Behav. Brain Sci.
10
,
161
(
1987
).
3.
W. M.
Sohaffer
and
M.
Kot
,
Trends Ecol. Evol.
1
,
58
(
1986
).
4.
B. J.
Cole
,
Proc. R. Soc. London, Ser. B
244
,
253
(
1991
).
5.
R. V. Solé, O. Miramontes, and B. Goodwin, J. Theor. Biol, (to be published).
6.
M. R.
Gardner
and
W. R.
Ashby
,
Nature
228
,
784
(
1970
).
7.
R. M.
May
,
Nature
238
,
413
(
1972
).
8.
P.
Yodzis
,
Nature
289
,
674
(
1981
).
9.
R. M. May, Stability and complexity in model ecosystems (Princeton University, Princeton, NJ, 1973).
10.
S. J.
Mc Naughton
,
Nature
274
,
251
(
1978
).
11.
C. E. Shannon and W. Weaver, The mathematical theory of information (University of Illinois, Chicago, 1962).
12.
R. Margalef, Perspectives in ecological theory (Chicago University, Chicago, 1968).
13.
A. A.
Berryman
and
J. A.
Milstein
,
Trends Ecol. Evol.
4
,
26
(
1989
).
14.
R. V.
Solé
and
J.
Valls
,
J. Theor. Biol.
155
,
87
(
1992
).
15.
M. W.
Sabelis
,
O.
Dierkmann
, and
V. A. A.
Jansen
,
Biol. J. Linnean Soc.
42
,
267
(
1991
).
16.
A. D.
Taylor
,
Ecology
71
,
429
(
1990
).
17.
K.
Kaneko
,
Physica D
34
, (
1989
).
18.
K.
Kaneko
,
Phys. Lett. A
149
,
105
(
1990
).
19.
K.
Kaneko
,
Physica D
37
,
60
(
1989
).
20.
J. P.
Crutchfield
and
K.
Kaneko
,
Phys. Rev. Lett.
60
,
2715
(
1988
).
21.
C. G.
Langton
,
Physica D
42
,
12
(
1990
).
22.
R. M.
May
,
Nature
261
,
559
(
1976
).
23.
M. P.
Hassell
and
H. N.
Comins
,
Theor. Popul. Bio.
9
,
202
(
1976
).
24.
J. D. Murray, Mathematical Biology (Springer, Berlin, 1989).
25.
G. Nicolis and I. Prigogine, Selforganization in nonequilibrium systems (Wiley, New York, 1977).
26.
R. V.
Solé
and
J.
Valls
,
Phys. Lett. A
153
,
330
(
1991
).
27.
R. V. Solé, J. Valls, and J. Bascompte, submitted to Phys. Lett. A.
28.
R. V.
Solé
and
J.
Valls
,
Phys. Lett. A
161
,
241
(
1991
).
29.
R. V. Solé, J. Bascompte, and J. Valls, J. Theor. Biol, (to be published).
30.
A. M.
Turing
,
Trans. R. Soc. London
237
,
37
(
1952
).
31.
K. Kaneko and T. Ikegami, Physica D (to be published).
32.
J. Bascompte and R. V. Solé, preprint.
33.
R. V. Solé and J. Bascompte, Measuring chaos from spatial information, preprint.
This content is only available via PDF.
You do not currently have access to this content.