Results on the dynamics of certain predominantly feedforward networks of phase oscillators are presented. We start with a purely feedforward chain and show numerically that in certain parameter ranges, independent of the length of the chain, there is a global attractor that is effectively a two-dimensional torus. Specifically, we find that after the system has reached its steady state, the phases of all the oscillators in the chain at any one moment in time are determined entirely by the phases of the first two oscillators. In the cases tested this phenomenon is found to persist with the addition of feedback couplings whose strengths may be up to a significant fraction of the feedforward strengths.

1.
Bard Ermentrout
,
G.
, “
n:m phase-locking of weakly coupled oscillators
,”
J. Math. Biol.
12
,
327
342
(
1981
).
2.
Bard Ermentrout
,
G.
, “
Type I membranes, phase resetting curves, and synchrony
,”
Neural Comput.
8
,
979
1001
(
1996
).
3.
Brown
,
E.
,
Moehlis
,
J.
, and
Holmes
,
P.
, “
On the phase reduction and response dynamics of neural oscillator populations
,”
Neural Comput.
16
,
673
715
(
2004
).
4.
Chazottes
,
J. -R.
and
Fernandez
,
B.
,
Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems
(
Springer
,
New York
,
2005
).
5.
Falconer
,
K.
,
Fractal Geometry. Mathematical Foundations and Applications
(
Wiley
,
New York
,
1990
).
6.
Gerstner
,
W.
and
Kistler
,
W. M.
,
Spiking Neuron Models. Single Neurons, Populations, Plasticity
(
Cambridge University Press
,
Cambridge, England
,
2002
).
7.
Guckenheimer
,
J.
and
Holmes
,
P.
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,
Applied Mathematical Sciences
Vol.
42
(
Springer-Verlag
,
Berlin
,
1990
). Revised and corrected reprint of the 1983 original.
8.
Herman
,
M. R.
, “
Sur la conjugaison des difféomorphismes du cercle à des rotations
,”
Bull. Soc. Math. France
46
,
181
188
(
1976
).
9.
Hoppensteadt
,
F. C.
and
Izhikevich
,
E. M.
,
Weakly Connected Neural Networks
,
Applied Mathematical Sciences
Vol.
126
(
Springer-Verlag
,
Berlin
,
1997
).
10.
Kuramoto
,
Y.
, “
Phase- and center-manifold reductions for large populations of coupled oscillators with application to non-locally coupled systems
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
7
,
789
805
(
1997
).
11.
Lin
,
K.
,
Shea-Brown
,
E.
, and
Young
,
L. -S.
, “
Reliability of coupled oscillators
,”
J. Nonlinear Sci.
19
,
497
545
(
2009
).
12.
Mirollo
,
R. E.
and
Strogatz
,
S. H.
, “
Synchronization of pulse-coupled biological oscillators
,”
SIAM J. Appl. Math.
50
,
1645
1662
(
1990
).
13.
Strogatz
,
S. H.
, “
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Physica D
143
,
1
20
(
2000
).
14.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
317
(
1985
).
You do not currently have access to this content.