This paper introduces the notion of robust extremes in deterministic chaotic systems, presents initial theoretical results, and outlines associated inferential techniques. A chaotic deterministic system is said to exhibit robust extremes under a given observable when the associated statistics of extreme values depend smoothly on the system’s control parameters. Robust extremes are here illustrated numerically for the flow of the Lorenz model [E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963)]. Robustness of extremes is proved for one-dimensional Lorenz maps with two distinct types of observables for which conditions guaranteeing robust extremes are formulated explicitly. Two applications are shown: improving the precision of the statistical estimator for extreme value distributions and predicting future extremes in nonstationary systems. For the latter, extreme wind speeds are examined in a simple quasigeostrophic model with a robust chaotic attractor subject to nonstationary forcing.

1.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer-Verlag
,
Berlin
,
1983
).
2.
H. W.
Broer
,
Bull., New Ser., Am. Math. Soc.
41
,
507
(
2004
).
3.
L. D.
Landau
and
E. M.
Lifshitz
,
Course of Theoretical Physics. Vol. 5: Statistical Physics
, translated from the Russian by J. B. Sykes and M. J. Kearsley, second revised and enlarged edition (
Pergamon
,
New York
,
1968
).
4.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
,
Phys. Rev. Lett.
48
,
1507
(
1982
).
5.
J.
Palis
and
F.
Takens
,
Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations
(
Cambridge University Press
,
Cambridge
,
1993
).
6.
S.
Banerjee
,
J. A.
Yorke
, and
C.
Grebogi
,
Phys. Rev. Lett.
80
,
3049
(
1998
).
7.
A.
Potapov
and
M. K.
Ali
,
Phys. Lett. A
277
,
310
(
2000
).
8.
M.
Andrecut
and
M. K.
Ali
,
Phys. Rev. E
64
,
025203
(R) (
2001
).
9.
10.
Z.
Elhadj
and
J.
Sprott
,
Fron. Phys. China
3
,
195
(
2008
).
11.
W.
Tucker
,
Acad. Sci., Paris, C. R. Sér. I Math.
328
,
1197
(
1999
).
13.
C. A.
Morales
,
M. J.
Pacifico
, and
E. R.
Pujals
,
Proc. Am. Math. Soc.
127
,
3393
(
1999
).
14.
J. F.
Alves
,
M.
Carvalho
, and
J. M.
Freitas
, “
Statistical stability for Hénon maps of the Benedicks-Carleson type
,”
Ann. Inst. Henri Poincare, Anal. Non Lineaire
(to be published), e-print arXiv:math/0610602.
15.
J. M.
Freitas
and
M.
Todd
,
Nonlinearity
22
,
259
(
2009
).
16.
E.
Castillo
,
Extreme Value Theory in Engineering
,
Statistical Modeling and Decision Science
(
Academic
,
New York
,
1988
).
17.
P.
Embrechts
,
C.
Klüppelberg
, and
T.
Mikosch
,
Modelling Extremal Events for Insurance and Finance
,
Applications of Mathematics (New York)
, Vol.
33
(
Springer-Verlag
,
Berlin
,
1997
).
18.
S.
Coles
,
An Introduction to Statistical Modeling of Extreme Values
,
Springer Series in Statistics
(
Springer
,
New York
,
2001
).
19.
J.
Beirlant
,
Y.
Goegebeur
,
J.
Teugels
, and
J.
Segers
,
Statistics of Extremes: Theory and Applications
(
Wiley
,
New York
,
2004
).
20.
P.
Collet
,
Ergod. Theory Dyn. Syst.
21
,
401
(
2001
).
21.
M.
Holland
,
M.
Nicol
, and
A.
Török
, “
Extreme value distributions for non-uniformly hyperbolic dynamical systems
” (unpublished).
22.
A. C. M.
Freitas
and
J. M.
Freitas
,
Ergod. Theory Dyn. Syst.
28
,
1117
(
2008
).
23.
A. C. M.
Freitas
,
J. M.
Freitas
, and
M.
Todd
, “
Hitting time statistics and extreme value theory
,”
Probab. Theory Relat. Fields
(to be published), e-print arXiv:0804.2887v2.
24.
M.
Felici
,
V.
Lucarini
,
A.
Speranza
, and
R.
Vitolo
,
J. Atmos. Sci.
64
,
2159
(
2007
).
25.
N. H.
Bingham
,
J. Comput. Appl. Math.
200
,
357
(
2007
).
26.
M. R.
Leadbetter
,
Z. Wahrscheinlichkeitstheor. Verwandte Geb.
65
,
291
(
1983
).
27.
C.
Sparrow
,
The Lorenz equations: bifurcations, chaos, and strange attractors
,
Applied Mathematical Sciences
, Vol.
41
(
Springer-Verlag
,
New York
,
1982
).
28.
The variable-order adaptive-stepsize Taylor method of Jorba and Zou (Ref. 51) is used for integration of Eq. (6) with local absolute and relative truncation errors fixed at 108.
29.
M.
Felici
,
V.
Lucarini
,
A.
Speranza
, and
R.
Vitolo
,
J. Atmos. Sci.
64
,
2137
(
2007
).
30.
V.
Lucarini
,
A.
Speranza
, and
R.
Vitolo
,
Physica D
234
,
105
(
2007
).
31.
E.
Kriegler
,
J. W.
Hall
,
H.
Held
,
R.
Dawson
, and
H. J.
Schellnhuber
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
5041
(
2009
).
32.
L. -S.
Young
,
J. Stat. Phys.
108
,
733
(
2002
).
33.
C.
Gupta
,
M.
Holland
, and
M.
Nicol
, “
Extreme value theory for Lorenz maps and flows, Henon-like diffeomorphisms and a class of hyperbolic systems with singularities
” (unpublished).
34.
A. C. M.
Freitas
and
J. M.
Freitas
,
Stat. Probab. Lett.
78
,
1088
(
2008
).
35.
L.
Mendoza
,
Mathematical Notes, No. 100 (Spanish)
(
Univ. de Los Andes
,
Mérida
,
1989
), pp.
91
101
.
36.
V.
Araujo
,
M. J.
Pacifico
,
E. R.
Pujals
, and
M.
Viana
,
Trans. Am. Math. Soc.
361
,
2431
(
2009
).
37.
S.
Luzzatto
and
W.
Tucker
,
Publ. Math., Inst. Hautes Etud. Sci.
89
,
179
(
1999
).
38.
S.
Luzzatto
,
I.
Melbourne
, and
F.
Paccaut
,
Commun. Math. Phys.
260
,
393
(
2005
).
39.
The algorithm described in Broer et al. (Ref. 52) has been used.
40.
D.
Ruelle
,
Commun. Math. Phys.
187
,
227
(
1997
).
41.
D.
Ruelle
,
Ergod. Theory Dyn. Syst.
28
,
613
(
2008
).
42.
G.
Gallavotti
and
E. G. D.
Cohen
,
J. Stat. Phys.
80
,
931
(
1995
).
43.
F.
Bonetto
,
G.
Gallavotti
,
A.
Giuliani
, and
F.
Zamponi
,
J. Stat. Phys.
123
,
39
(
2006
).
44.
G.
Gallavotti
,
Foundations of Fluid Dynamics
(
Springer-Verlag
,
Berlin
,
2002
).
45.
D. J.
Albers
,
J. C.
Sprott
, and
J. P.
Crutchfield
,
Phys. Rev. E
74
,
057201
(
2006
).
46.
J. M.
Murphy
,
B. B. B.
Booth
,
M.
Collins
,
G. R.
Harris
,
D. M. H.
Sexton
, and
M. J.
Webb
,
Philos. Trans. R. Soc. London, Ser. A
365
,
1993
(
2007
).
47.
R. A.
Rigby
and
D. M.
Stasinopoulos
,
J. R. Stat. Soc., Ser. C, Appl. Stat.
54
,
507
(
2005
).
48.
D.
Stasinopoulos
and
R. A.
Rigby
,
J. Stat. Software
23
,
1
(
2007
).
49.
T. J.
Hastie
, in
Statistical Models in S
, edited by
J. M.
Chambers
and
T. J.
Hastie
(
Brooks-Cole
,
Belmont
,
1991
), pp.
309
376
.
50.
J. F.
Alves
,
C.
Bonatti
, and
M.
Viana
,
Invent. Math.
140
,
351
(
2000
).
51.
À.
Jorba
and
M.
Zou
,
Exp. Math.
14
,
99
(
2005
).
52.
H.
Broer
,
C.
Simó
, and
R.
Vitolo
,
Nonlinearity
15
,
1205
(
2002
).
You do not currently have access to this content.