In this paper, we participate to the discussion set forth by the editor of Chaos for the controversy, “Is the normal heart rate chaotic?” Our objective was to debate the question, “Is there some more appropriate term to characterize the heart rate variability (HRV) fluctuations?” We focused on the ≈24 h RR series prepared for this topic and tried to verify with two different techniques, generalized structure functions and wavelet transform modulus maxima, if they might be described as being multifractal. For normal and congestive heart failure subjects, the hq exponents showed to be decreasing for increasing q with both methods, as it should be for multifractal signals. We then built 40 surrogate series to further verify such hypothesis. For most of the series (≈75%–80% of cases) multifractality stood the test of the surrogate data employed. On the other hand, series coming from patients in atrial fibrillation showed a small, if any, degree of multifractality. The population analyzed is too small for definite conclusions, but the study supports the use of multifractal series to model HRV. Also it suggests that the regulatory action of autonomous nervous system might play a role in the observed multifractality.

1.
R. E.
Kleiger
,
J. P.
Miller
,
J. T.
Bigger
,
A. J.
Moss
, and
Multicenter Post-Infarction Research Group
,
Am. J. Cardiol.
59
,
256
(
1987
).
2.
M.
Malik
,
T.
Farrell
,
T.
Cripps
, and
A. J.
Camm
,
Eur. Heart J.
10
,
1060
(
1989
).
3.
M.
Kobayashi
and
T.
Musha
,
IEEE Trans. Biomed. Eng.
BME-29
,
456
(
1982
).
4.
B. B.
Mandelbrot
,
The Fractal Geometry of Nature
(
Freeman
,
San Francisco
,
1983
).
5.
J.
Beran
,
Statistics for Long-Memory Processes
(
Chapman and Hall
,
London
,
1994
).
7.
A. L.
Goldberger
and
B. J.
West
,
Yale J. Biol. Med.
60
,
421
(
1987
).
8.
D. G.
Chaffin
,
C. C.
Goldberg
, and
K. L.
Reed
,
Am. J. Obstet. Gynecol.
165
,
1425
(
1991
).
9.
G.
Baselli
,
S.
Cerutti
,
A.
Porta
, and
M. G.
Signorini
,
Med. Eng. Phys.
24
,
21
(
2002
).
10.
J. H.
Lefebvre
,
D. A.
Goodings
,
M. V.
Kamath
, and
E. L.
Fallen
,
Chaos
3
,
267
(
1993
).
11.
J. K.
Kanters
,
N. H.
Holsteinrathlou
, and
E.
Agner
,
J. Cardiovasc. Electrophysiol.
5
,
591
(
1994
).
12.
A. R.
Osborne
and
A.
Provenzale
,
Physica D
35
,
357
(
1989
).
13.
J.
Theiler
,
S.
Eubank
,
A.
Longtin
,
B.
Galdrikian
, and
J. D.
Farmer
,
Physica D
58
,
77
(
1992
).
14.
C.
Poon
and
M.
Barahona
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
7107
(
2001
).
15.
M.
Lei
and
G.
Meng
,
Chaos, Solitons Fractals
36
,
512
(
2008
).
16.
U. S.
Freitas
,
C.
Letellier
, and
L. A.
Aguirre
,
Phys. Rev. E
79
,
035201
(
2009
).
17.
G. -Q.
Wu
,
N. M.
Arzeno
,
L. -L.
Shen
,
D. -K.
Tang
,
D. -A.
Zheng
,
N. -Q.
Zhao
,
D. L.
Eckberg
, and
C. -S.
Poon
,
PLoS ONE
4
,
e4323
(
2009
).
18.
G.
Paladin
and
A.
Vulpiani
,
Phys. Rep.
156
,
147
(
1987
).
19.
C.
Toniolo
,
A.
Provenzale
, and
E. A.
Spiegel
,
Phys. Rev. E
66
,
066209
(
2002
).
20.
J.
Feder
,
Fractals
(
Plenum
,
New York
,
1988
).
21.
S.
Mallat
,
A Wavelet Tour of Signal Processing
, 2nd ed. (
Academic
,
New York
,
1999
).
22.
J. G.
von Hardenberg
,
R.
Thieberger
, and
A.
Provenzale
,
Phys. Lett. A
269
,
303
(
2000
).
23.
U.
Frisch
and
G.
Parisi
, in
Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics
, edited by
M.
Ghil
,
R.
Benzi
, and
G.
Parisi
(
North-Holland
,
Amsterdam
,
1985
), Vol.
88
, pp.
84
88
.
24.
J. F.
Muzy
,
E.
Bacry
, and
A.
Arneodo
,
Phys. Rev. E
47
,
875
(
1993
).
25.
T.
Schreiber
and
A.
Schmitz
,
Phys. Rev. Lett.
77
,
635
(
1996
).
26.
P. C.
Ivanov
,
L. A. N.
Amaral
,
A. L.
Goldberger
,
S.
Havlin
,
M. G.
Rosenblum
,
Z. R.
Struzik
, and
H. E.
Stanley
,
Nature (London)
399
,
461
(
1999
).
27.
D. C.
Lin
and
R.
Hughson
,
IEEE Trans. Biomed. Eng.
49
,
97
(
2002
).
You do not currently have access to this content.