We describe a hierarchy of models for legged locomotion, emphasizing relationships among feedforward (preflexive) stability, maneuverability, and reflexive feedback. We focus on a hexapedal geometry representative of insect locomotion in the ground plane that includes a neural central pattern generator circuit, nonlinear muscles, and a representative proprioceptive sensory pathway. Although these components of the model are rather complex, neglect of leg mass yields a neuromechanical system with only three degrees of freedom, and numerical simulations coupled with a Poincaré map analysis shows that the feedforward dynamics is strongly stable, apart from one relatively slow mode and a neutral mode in body yaw angle. These modes moderate high frequency perturbations, producing slow heading changes that can be corrected by a stride-to-stride steering strategy. We show that the model’s response to a lateral impulsive perturbation closely matches that of a cockroach subject to a similar impulse. We also describe preliminary studies of proprioceptive leg force feedback, showing how a reflexive pathway can reinforce the preflexive stability inherent in the system.

1.
Arthropod locomotion systems: From biological materials and systems to robotics
,”
Arthropod Structure & Development
33
(
3
),
251
(
2004
). Special issue edited by
R. E.
Ritzmann
,
S. N.
Gorb
, and
R. D.
Quinn
.
2.
D. E.
Koditschek
,
R. J.
Full
, and
M.
Buehler
, “
Mechanical aspects of legged locomotion control
,”
Arthropod Structure & Development
33
(
3
251
(
2004
).
3.
4.
R. McN.
Alexander
,
Principles of Animal Locomotion
(
Princeton University Press
,
Princeton, NJ
,
2003
).
5.
D.
Jindrich
and
R. J.
Full
, “
Dynamic stabilization of rapid hexapedal locomotion
,”
J. Exp. Biol.
205
,
2803
(
2002
).
6.
I. E.
Brown
,
S. H.
Scott
, and
G. E.
Loeb
, “
Preflexes—programmable high-gain zero-delay intrinsic responses of perturbed musculoskeletal systems
,”
Abstr. Soc. Neurosci.
21
,
562
(
1995
).
7.
R. J.
Full
and
M.
Tu
, “
Mechanics of six-legged runners
,”
J. Exp. Biol.
148
,
129
(
1990
).
8.
R. J.
Full
and
M.
Tu
, “
Mechanics of a rapid running insect: two-, four-, and six-legged locomotion
,”
J. Exp. Biol.
156
,
215
(
1991
).
9.
R. J.
Full
,
R.
Blickhan
, and
L.
Ting
, “
Leg design in hexapedal runners
,”
J. Exp. Biol.
158
,
369
(
1991
).
10.
M.
Srinivasan
and
P.
Holmes
, “
How well can spring-mass-like telescoping leg models fit multi-pedal sagittal-plane locomotion data?
J. Theor. Biol.
255
,
1
(
2008
).
11.
D.
Jindrich
and
R. J.
Full
, “
Many-legged maneuverability: Dynamics of turning in hexapods
,”
J. Exp. Biol.
202
,
1603
(
1999
).
12.
R.
Blickhan
, “
The spring-mass model for running and hopping
,”
J. Biomech.
22
,
1217
(
1989
).
13.
R.
Blickhan
and
R. J.
Full
, “
Similarity in multi-legged locomotion: bouncing like a monopode
,”
J. Comp. Physiol. [A]
173
,
509
(
1993
).
14.
R.
Ghigliazza
,
R.
Altendorfer
,
P.
Holmes
, and
D.
Koditschek
, “
A simply stabilized running model
,”
SIAM Rev.
2
187
(
2003
).
15.
H.
Geyer
,
A.
Seyfarth
, and
R.
Blickhan
, “
Spring mass running: simple approximate solution and application to gait stability
,”
J. Theor. Biol.
232
,
315
(
2005
).
16.
J.
Schmitt
and
P.
Holmes
, “
Mechanical models for insect locomotion: Dynamics and stability in the horizontal plane—I. Theory
,”
Biol. Cybern.
83
,
501
(
2000
).
17.
J.
Schmitt
,
M.
Garcia
,
C.
Razo
,
P.
Holmes
, and
R. J.
Full
, “
Dynamics and stability of legged locomotion in the horizontal plane: A test case using insects
,”
Biol. Cybern.
86
,
343
(
2002
).
18.
R. J.
Full
and
D.
Koditschek
, “
Templates and anchors: neuromechanical hypothesis of legged locomotion on land
,”
J. Exp. Biol.
202
,
3325
(
1999
).
19.
J.
Seipel
,
P.
Holmes
, and
R. J.
Full
, “
Dynamics and stability of insect locomotion: A hexapedal model for horizontal plane motions
,”
Biol. Cybern.
91
,
76
(
2004
).
20.
R. M.
Ghigliazza
and
P.
Holmes
, “
A minimal model of a central pattern generator and motoneurons for insect locomotion
,”
SIAM J. Appl. Dyn. Syst.
3
,
671
(
2004
).
21.
R. P.
Kukillaya
and
P.
Holmes
, “
A hexapedal jointed-leg model for insect locomotion in the horizontal plane
,”
Biol. Cybern.
97
,
379
(
2007
).
22.
R. P.
Kukillaya
and
P.
Holmes
, “
A model for insect locomotion in the horizontal plane: Feedforward activation of fast muscles, stability, and robustness
” (unpublished).
23.
A.
Ruina
, “
Non-holonomic stability aspects of piecewise holonomic systems
,”
Rep. Math. Phys.
42
,
91
(
1998
).
24.
P.
Holmes
,
R. J.
Full
,
D.
Koditschek
, and
J.
Guckenheimer
, “
The dynamics of legged locomotion: Models, analyses and challenges
,”
SIAM Rev.
48
,
207
(
2006
).
25.
J.
Schmitt
and
P.
Holmes
, “
Mechanical models for insect locomotion: Dynamics and stability in the horizontal plane—II. Application
,”
Biol. Cybern.
83
,
517
(
2000
).
26.
J.
Proctor
and
P.
Holmes
, “
Steering by transient destabilization in piecewise-holonomic models of legged locomotion
,”
Regular Chaotic Dyn.
13
,
267
(
2008
).
27.
J.
Schmitt
and
P.
Holmes
, “
Mechanical models for insect locomotion: Stability and parameter studies
,”
Physica D
156
,
139
(
2001
).
28.
R.
Kram
,
B.
Wong
, and
R. J.
Full
, “
Three-dimensional kinematics and limb kinetic energy of running cockroaches
,”
J. Exp. Biol.
200
,
1919
(
1997
).
29.
J.
Guckenheimer
and
S.
Johnson
,
Planar Hybrid Systems
,
Lecture Notes in Computer Science
No. 999 (
Springer-Verlag
,
Berlin
,
1995
), pp.
202
225
.
30.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields
(
Springer
,
Berlin
,
2002
).
31.
A. V.
Hill
, “
The heat of shortening and the dynamic constants of muscle
,”
Philos. Trans. R. Soc. London, Ser. B
126
,
136
(
1938
).
32.
F. E.
Zajac
, “
Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control
,”
CRC Critical Review Letters in Biomedical Engineering
(CRC Press, Boca Raton, 1989), edited by
J. R.
Bourne
, Vol.
17
, pp.
359
411
.
33.
H.
Hatze
, “
A myocybernetic control model of skeletal muscle
,”
Biol. Cybern.
25
,
103
(
1977
).
34.
A. N.
Ahn
and
R. J.
Full
, “
A motor and a brake: Two leg extensor muscles acting at the same joint manage energy differently in a running insect
,”
J. Exp. Biol.
205
,
379
(
2002
).
35.
H.
Hatze
, “
General myocybernetic control model of skeletal muscle
,”
Biol. Cybern.
28
,
143
(
1978
).
36.
A. N.
Ahn
,
K.
Meijer
, and
R. J.
Full
, “
In situ muscle power differs without varying in vitro mechanical properties in two insect leg muscles innvervated by the same motor neuron
,”
J. Exp. Biol.
209
,
3370
(
2006
).
37.
K. G.
Pearson
and
J. F.
Iles
, “
Discharge patterns of coxal levator and depressor motoneurones in the cockroach
,”
J. Exp. Biol.
52
,
139
(
1970
).
38.
K. G.
Pearson
and
J. F.
Iles
, “
Innervation of the coxal depressor muscles in the cockroach
,”
J. Exp. Biol.
54
,
215
(
1971
).
39.
K. G.
Pearson
, “
Central programming and reflex control of walking in the cockroach
,”
J. Exp. Biol.
56
,
173
(
1972
).
40.
K. G.
Pearson
and
J. F.
Iles
, “
Nervous mechanisms underlying intersegmental co-ordination of leg movements during walking in the cockroach
,”
J. Exp. Biol.
58
,
725
(
1973
).
41.
R. M.
Ghigliazza
and
P.
Holmes
, “
Minimal models of bursting neurons: How multiple currents, conductances and timescales affect bifurcation diagrams
,”
SIAM J. Appl. Dyn. Syst.
3
,
636
(
2004
).
42.
See EPAPS Document No. E-CHAOEH-19-005992 for parameter values and code documentation. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
43.
S. N.
Zill
and
D. T.
Moran
, “
The exoskeleton and insect proprioception I. Responses of tibial campaniform sensilla to external and muscle-generated force in the American cockroach Periplaneta Americana
,”
J. Exp. Biol.
91
,
1
(
1981
).
44.
S. N.
Zill
,
D. T.
Moran
, and
F. G.
Varela
, “
The exoskeleton and insect proprioception II. Reflex effects of tibial campaniform sensilla in the American cockroach Periplaneta Americana
,”
J. Exp. Biol.
94
,
43
(
1981
).
45.
S. N.
Zill
and
D. T.
Moran
, “
The exoskeleton and insect proprioception III. Activity of tibial campaniform sensilla during walking in the American cockroach Periplaneta Americana
,”
J. Exp. Biol.
94
,
57
(
1981
).
46.
J.
Proctor
and
P.
Holmes
, “
Reflexes and preflexes: On the role of sensory feedback on rhythmic patterns in legged locomotion
” (unpublished).
47.
J. M.
Camhi
and
E. N.
Johnson
, “
High-frequency steering maneuvers mediated by tactile cues: Antennal wall-following in the cockroach
,”
J. Exp. Biol.
202
,
631
(
1999
).
48.
N. J.
Cowan
,
J.
Lee
, and
R. J.
Full
, “
Task-level control of rapid wall following in the American cockroach
,”
J. Exp. Biol.
209
,
1617
(
2006
).
49.
J.
Lee
,
S. N.
Sponberg
,
O. Y.
Loh
,
A. G.
Lamperski
,
R. J.
Full
, and
N. J.
Cowan
, “
Templates and anchors for antenna-based wall following in cockroaches
,”
IEEE Trans. Rob. Autom.
24
,
130
(
2008
).
50.
M.
Höltje
and
R.
Hustert
, “
Rapid mechano-sensory pathways code leg impact and elicit very rapid reflexes in insects
,”
J. Exp. Biol.
206
,
2715
(
2003
).
51.
J.
Seipel
and
P.
Holmes
, “
A simple model for clock-actuated legged locomotion
,”
Regular Chaotic Dyn.
12
,
502
(
2007
).
52.
J. A.
Bender
,
E. M.
Simpson
, and
R. E.
Ritzmann
, “
Increased stereotypy of leg movement patterns with increased walking speed in the cockroach
,”
Abstr. Soc. Neurosci.
34
,
198
6
(
2008
).
53.
R.
Rose
and
J.
Hindmarsh
, “
The assembly of ionic currents in a thalamic neuron I. The three-dimensional model
,”
Proc. R. Soc., London, Ser. B
,
237
,
267
(
1989
).
54.
J.
Connor
,
D.
Walter
, and
R.
McKown
, “
Neural repetitive firing: modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons
,”
Biophys. J.
18
,
81
(
1977
).

Supplementary Material

You do not currently have access to this content.