It is shown, under weak conditions, that the dynamical evolution of large systems of globally coupled phase oscillators with Lorentzian distributed oscillation frequencies is, in an appropriate physical sense, time-asymptotically attracted toward a reduced manifold of the system states. This manifold was previously known and used to facilitate the discovery of attractors and bifurcations of such systems. The result of this paper establishes that attractors for the order parameter dynamics obtained by restriction to this reduced manifold are, in fact, the only such attractors of the full system. Thus all long time dynamical behaviors of the order parameters of these systems can be obtained by restriction to the reduced manifold.
REFERENCES
1.
Y.
Kuramoto
, in International Symposium on Mathematical Problems in Theoretical Physics
, Lecture Notes in Physics
Vol. 139
, edited by H.
Araki
(Springer-Verlag
, Berlin
, 1975
);Chemical Oscillations, Waves and Turbulence
(Springer
, Berlin
, 1984
);For reviews of the Kuramoto model, see
J. A.
Acebron
, L. L.
Bonilla
, C. J. P.
Vincente
, F.
Ritortr
, and R.
Spigler
, Rev. Mod. Phys.
77
, 137
(2005
);S. H.
Strogatz
, Physica D
143
, 1
(2000
);E.
Ott
, Chaos in Dynamical Systems
, 2nd ed. (Cambridge University Press
, Cambridge
, 2002
), Chap. 6.2.
S. A.
Marvel
and S. H.
Strogatz
, Chaos
19
, 013132
(2009
).3.
M. M.
Abdulrehem
and E.
Ott
, Chaos
19
, 013129
(2009
).4.
B.
Eckhardt
, E.
Ott
, S. H.
Strogatz
, D. M.
Abrams
, and A.
McRobie
, Phys. Rev. E
75
, 021110
(2007
);S. H.
Strogatz
, D. M.
Abrams
, A.
McRobie
, B.
Eckhardt
, and E.
Ott
, Nature (London)
438
, 43
(2005
).5.
P.
So
, B. C.
Cotton
, and E.
Barreto
, Chaos
18
, 037114
(2008
).6.
H.
Sakaguchi
, Prog. Theor. Phys.
79
, 39
(1988
).7.
L. M.
Childs
and S. H.
Strogatz
, Chaos
18
, 043128
(2008
).8.
M.
Choi
, H. J.
Kim
, D.
Kim
, and H.
Hong
, Phys. Rev. E
61
, 371
(2000
);M. K. S.
Yeung
and S. H.
Strogatz
, Phys. Rev. Lett.
82
, 648
(1999
).9.
10.
J. D.
Crawford
, J. Stat. Phys.
74
, 1047
(1994
).11.
E. A.
Martens
, E.
Barreto
, S. H.
Strogatz
, E.
Ott
, P.
So
, and T. M.
Antonsen
, Phys. Rev. E
79
, 026204
(2009
).12.
E.
Barreto
, B.
Hunt
, E.
Ott
, and P.
So
, Phys. Rev. E
77
, 036107
(2008
).13.
A.
Pikovsky
and M.
Rosenblum
, Phys. Rev. Lett.
101
, 264103
(2008
).14.
D. W.
Abrams
, R.
Mirollo
, S. H.
Strogatz
, and D. A.
Wiley
, Phys. Rev. Lett.
101
, 084103
(2008
).15.
E.
Ott
and T. M.
Antonsen
, Chaos
18
, 037113
(2008
).16.
S.
Watanabe
and S. H.
Strogatz
, Physica D
74
, 197
(1994
). For this paper shows that resistively coupled Josephson junctions can desplay chaos, while Ref. 2 shows that the dynamics of the order parameter on the reduced manifold of this system is two dimensional and hence cannot be chaotic. Thus, there is long time dynamics not on the reduced manifold in this system if .18.
Equation (24), together with the final condition , can be viewed as generating a conformal mapping from the complex -plane to the complex -plane. Since Eq. (24) with given by Eq. (20) is a Riccati equation, this mapping is a Möbius transformation, , where the coefficients and depend on . [See, for example, Ref. 21, Eq. (4.1.6).] Thus the unit disk in (i.e., ) is mapped into a disk in , and since, by Eq. (25), at for , this disk is contained within the region . Our result, as , implies that the radius of this -disk shrinks to zero as .
19.
E.
Ott
, J. H.
Platig
, T. M.
Antonsen
, and M.
Girvan
, Chaos
18
, 037115
(2008
) (in particular, see Appendix C).20.
It is interesting to note that for Lorentzian , and that this term increases exponentially with for but then decreases exponentially with for . This general type of behavior is what is responsible for the “echo” phenomenon in Ref. 19. We also note the result that tends to zero even though need not be similar to the behavior of the distribution function for linear, Landau damped, waves in collisionless plasmas. For example, see Ref. 19 and
S. H.
Strogatz
, R. E.
Mirollo
, and P. C.
Matthews
, Phys. Rev. Lett.
68
, 2730
(1992
).21.
E.
Hille
, Ordinary Differential Equations in the Complex Domain
(Courier Dover
, New York
, 1997
), p. 105
.© 2009 American Institute of Physics.
2009
American Institute of Physics
You do not currently have access to this content.