A system of two coupled nonautonomous oscillators is considered. Dynamics of complex amplitudes is governed by differential equations with periodic piecewise continuous dependence of the coefficients on time. The Poincaré map is derived explicitly. With the exclusion of the overall phase, on which the evolution of other variables does not depend, the Poincaré map is reduced to three–dimensional (3D) mapping. It possesses an attractor of Plykin-type located on an invariant sphere. Computer verification of the cone criterion confirms the hyperbolic nature of the attractor in the 3D map. Some results of numerical studies of the dynamics for the coupled oscillators are presented, including the attractor portraits, Lyapunov exponents, and the power spectral density.

1.
J.-P.
Eckmann
and
D.
Ruelle
,
Rev. Mod. Phys.
57
,
617
(
1985
).
2.
R. L.
Devaney
,
An Introduction to Chaotic Dynamical Systems
(
Addison-Wesley
,
New York
,
1989
).
3.
L.
Shilnikov
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
7
,
1353
(
1997
).
4.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer
,
Berlin
,
2002
).
5.
L. P.
Shilnikov
,
A. L.
Shilnikov
,
D. V.
Turaev
, and
L. O.
Chua
,
Methods of Qualitative Theory in Nonlinear Dynamics
(
World Scientific
,
Singapore
,
1998
).
6.
A.
Katok
and
B.
Hasselblatt
,
Introduction to the Modern Theory of Dynamical Systems
(
Cambridge University Press
,
Cambridge
,
1995
).
7.
V.
Afraimovich
and
S.-B.
Hsu
,
Lectures on Chaotic Dynamical Systems
,
AMS/IP Studies in Advanced Mathematics
(
American Mathematical Society
,
Providence
;
International
,
Somerville
,
2003
), Vol.
28
.
8.
B.
Hasselblatt
and
Y.
Pesin
, “
Hyperbolic dynamics
,” Scholarpedia, http://www.scholarpedia.org (
2008
).
9.
T. J.
Hunt
and
R. S.
MacKay
,
Nonlinearity
16
,
1499
(
2003
).
10.
R. V.
Plykin
,
Math. USSR. Sb.
23
,
233
(
1974
).
11.
S. E.
Newhouse
,
Lectures on Dynamical Systems
,
Dynamical Systems, C.I.M.E. Lectures Bressanone. Progress in Mathematics
, No
8
(
Birkhäuser-Boston
,
Boston
,
1980
), p.
1
.
12.
S. P.
Kuznetsov
,
Phys. Rev. Lett.
95
,
144101
(
2005
).
13.
S. P.
Kuznetsov
and
E. P.
Seleznev
,
JETP
102
,
355
(
2006
).
14.
S. P.
Kuznetsov
and
I. R.
Sataev
,
Phys. Lett. A
365
,
97
(
2007
).
15.
O. B.
Isaeva
,
A. Yu.
Jalnine
, and
S. P.
Kuznetsov
,
Phys. Rev. E
74
,
046207
(
2006
).
16.
S. P.
Kuznetsov
and
A.
Pikovsky
,
Physica D
232
,
87
(
2007
).
17.
S. P.
Kuznetsov
and
A.
Pikovsky
,
Europhys. Lett.
84
,
10013
(
2008
).
18.
S. P.
Kuznetsov
and
V. I.
Ponomarenko
,
Tech. Phys. Lett.
34
,
771
(
2008
).
19.
J. T.
Halbert
and
J. A.
Yorke
, “
Modeling a chaotic machine’s dynamics as a linear map on a `square sphere'
,” http://www.math.umd.edu/~halbert/taffy-paper-1.pdf.
20.
C. A.
Morales
,
Ann. Inst. Henri Poincare, Sect. A
13
,
589
(
1996
).
21.
V.
Belykh
,
I.
Belykh
, and
E.
Mosekilde
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
15
,
356
(
2005
).
22.
T. J.
Hunt
, “
Low dimensional dynamics: Bifurcations of Cantori and realizations of uniform hyperbolicity
,” Ph.D. thesis,
University of Cambridge
,
2000
.
23.
Y.
Pesin
and
B.
Hasselblatt
, “
Partial hyperbolicity
,” Scholarpedia, http://www.scholarpedia.org (
2008
).
24.
J. S.
Aidarova
and
S. P.
Kuznetsov
, “
Chaotic dynamics of the Hunt model, an artificially constructed system with hyperbolic attractor
,’’
Izv. VUZov—Prikladnaja Nelineinaja Dinamika
16
,
176
(
2008
) (in Russian), Saratov State University, ISSN 0869–6632, English translation. Preprint is available http://xxx.lanl.gov/abs/0901.2727.
25.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
,
Meccanica
15
,
9
(
1980
).
26.
J. G.
Sinai
and
E. P.
Vul
,
Physica D
2
,
3
(
1981
).
27.
S. P.
Kuznetsov
,
Dinamicheskii Khaos
(
Moscow
,
Fizmatlit
,
2006
) (in Russian).
28.
S. P.
Kuznetsov
A non-autonomous flow system with Plykin type attractor
, ‘‘
Communications in Nonlinear Science and Numerical Simulations
,’’ Elsevier (to be published). Preprint is available http://xxx.lanl.gov/abs/0901.3533.
29.
Y.
Coudene
,
Not. Am. Math. Soc.
53
,
8
(
2006
).
30.
S.
Newhouse
,
D.
Ruelle
, and
F.
Takens
,
Commun. Math. Phys.
64
,
35
(
1978
).
31.
A. L.
Shilnikov
,
L. P.
Shilnikov
, and
D. V.
Turaev
,
Mosc. Math. J.
5
,
269
(
2005
).
32.

A special comment is needed to the work of Halbert and Yorke (Ref. 19) announcing a physical realization of the Plykin attractor. As a physical object, the taffy-pulling machine they discuss is not a low-dimensional system, but contains a piece of continuous medium undergoing deformations in such way that the motion of local elements of the medium obeys a map with the Plykin-type attractor. In other words, it is an ensemble of elements, each of which carries out motion on the Plykin-type attractor. Thus, referring to the physical realization of the attractor, the authors stand for another meaning than that we have in mind here (as well as other authors, Refs. 9 and 20–22).

You do not currently have access to this content.