Electrocorticographic (ECoG) signals from the brain surface typically exhibit high synchrony across large cortical areas, interrupted by brief periods of desynchronization exhibiting propagating phase discontinuities, across which spatial patterns of phase emerge in selected frequency bands. Experiments with rabbits trained using classical conditioning paradigms indicated that such desynchronization periods demarcate cognitive processing in the subjects; the ECoG in the frames between such periods revealed spatial patterns of amplitude modulation that were classified with respect to sensory stimuli that the rabbits had been trained to recognize. The present work describes intermittent synchrony and desynchronization of ECoG signals measured over the visual cortex. We analyze the analytic amplitude (AA) and analytic phase (AP) of the signals bandpassed over the beta band (12.525Hz) and theta band (37Hz) using the Hilbert transform. The AP of analytic signals evaluated using a Shannon-based synchronization index in theta band exhibits phase synchronization for varying time periods averaging about 1s, interrupted by desynchronization periods of duration about 0.1s. Synchronization periods in the beta-band last <100ms, with interruptions by desynchronization lasting one-tenth that, in which the analytic amplitude drops drastically. During these “null spikes,” the analytic phase is undefined, and the spatial and temporal phase differences show high dispersion. Detailed examination of the bandpass filtered ECoG confirms the presence of a shared mean frequency in a frame of synchronized oscillation, at which frequency the spatial pattern of the AP has the form of a cone. Between frames the AA approaches zero. The form of the null spike resembles a tornado (a vortex), as shown in sequential frames by a rotating spatial pattern of amplitude in the filtered ECoG.

1.
J. M.
Barrie
,
W. J.
Freeman
, and
M.
Lenhart
, “
Modulation by discriminative training of spatial patterns of gamma EEG amplitude and phase in neocortex of rabbits
,”
J. Neurophysiol.
76
,
520
539
(
1996
).
2.
B.
Boashash
, “
Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications
,”
Proc. IEEE
80
,
540
568
(
1992
).
3.
J.
Crutchfield
,
D.
Farmer
,
N.
Packard
,
R.
Shaw
,
G.
Jones
, and
R.
Donnelly
, “
Power spectral analysis of a dynamical system
,”
Phys. Lett.
76
,
1
4
(
1980
).
4.
W. J.
Freeman
, “
Origin, structure and role of the background EEG activity. Part 1. Analytic amplitude
,”
J. Clin. Neurophysiol.
115
,
2077
2088
(
2004
).
5.
W. J.
Freeman
, “
Origin, structure and role of the background EEG activity. Part 2. Analytic phase
,”
J. Clin. Neurophysiol.
115
,
2089
(
2004
);
W.
Freeman
, “
Origin, structure and role of the background EEG activity. Part 2. Analytic phase
,”
J. Clin. Neurophysiol.
115
,
2107
(
2004
).
6.
W. J.
Freeman
, “
Origin, structure, and role of background EEG activity. Part 3. Neural frame classification
,”
J. Clin. Neurophysiol.
116
,
1118
1129
(
2005
).
7.
W. J.
Freeman
, “
Origin, structure, and role of background EEG activity. Part 4. Neural frame simulation
,”
J. Clin. Neurophysiol.
117
,
572
589
(
2006
).
8.
W. J.
Freeman
, “
Hilbert transform for brain waves: Entry for Encyclopedia for Computational Neuroscience
,” in
Scholarpedia
, edited by
E.
Izhikevich
, Vol.
2
, Issue
1
(
2007
), p.
1338
(on-line edition, ISSN 1941-6016), http://www.scholarpedia.org.
9.
W. J.
Freeman
, “
Proposed cortical “shutter” mechanism in cinematographic perception
,” in
Neurodynamics of Cognition and Consciousness
, edited by
L.
Perlovsky
and
R.
Kozma
(
Springer-Verlag
,
Heidelberg
,
2007
), pp.
11
38
.
10.
W. J.
Freeman
, “
A pseudo-equilibrium thermodynamic model of information processing in nonlinear brain dynamics
,”
Neural Networks
21
,
257
265
(
2008
).
11.
W. J.
Freeman
and
B.
Baird
, “
Relation of olfactory EEG to behavior: Spatial analysis: Behavioral
,”
Neuroscience
101
,
393
408
(
1987
).
12.
W. J.
Freeman
and
J. M.
Barrie
, “
Analysis of spatial patterns of phase in neocortical gamma EEGs in rabbits
,”
J. Neurophysiol.
84
,
1266
1278
(
2000
).
13.
W. J.
Freeman
and
L. J.
Rogers
, “
Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEG
,”
J. Neurophysiol.
87
,
937
945
(
2002
).
14.
W. J.
Freeman
and
G.
Vitiello
, “
Dissipation and spontaneous symmetry breaking in brain dynamics
,”
J. Phys. A: Math. Theor.
41
,
304042
(
2008
).
15.
N. E.
Huang
,
Z.
Shen
,
S. R.
Long
,
M. C.
Wu
,
H. H.
Shih
,
Q.
Zheng
,
N. C.
Yen
,
C. C.
Tung
, and
H. H.
Liu
, “
The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis
,”
Proc. R. Soc. Lond. A
454
,
903
995
(
1998
).
16.
S.
Kelso
,
Dynamic Patterns: The Self-organization of Brain and Behavior
(
MIT Press
,
Cambridge, MA
,
1995
).
17.
R.
Kozma
and
W. J.
Freeman
, “
Chaotic resonance—Methods and applications for robust classification of noisy and variable patterns
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
11
,
1607
1629
(
2001
).
18.
R.
Kozma
,
M.
Puljic
,
B.
Bollobas
,
P.
Balister
, and
W. J.
Freeman
, “
Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions
,”
Biol. Cybern.
92
,
367
379
(
2005
).
19.
J.
Marple
and
S.
Lawrance
, “
Computing the discrete time analytic signal via FFT
,”
IEEE Trans. Signal Process.
47
,
2600
2603
(
1999
).
20.
A.
Oppenheim
and
W.
Schafer
,
Discrete-Time Signal Processing
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1989
).
21.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
, “
Phase synchronization in regular and chaotic systems
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
10
,
2291
2305
(
2000
).
22.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization. A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge, UK
,
2001
).
23.
B.
Porat
,
A Course in Digital Signal Processing
(
Wiley
,
New York
,
1997
).
24.
M. E.
Raichle
, “
The brain’s dark energy
,”
Science
314
,
1249
1250
(
2006
).
25.
J.
Rodriguez
and
R.
Kozma
, “
Phase synchronization in mesoscopic electroencephalogram arrays
,”
Intelligent Engineering Systems Through Artificial Neural Networks
(
ASME Press
,
New York
,
2007
), Vol.
17
, pp.
9
14
.
26.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
, “
Synchronization approach to analysis of biological systems
,”
Fluct. Noise Lett.
4
,
53
62
(
2004
).
27.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillators
,”
Phys. Rev. Lett.
76
,
1804
(
1996
).
28.
W.
Singer
and
C.
Gray
, “
Visual feature integration and the temporal correlation hypothesis
,”
Annu. Rev. Neurosci.
18
,
555
586
(
1995
).
29.
P.
Welch
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
AU-15
,
70
73
(
1967
).
You do not currently have access to this content.