We study the emergence of polyrhythmic dynamics of motifs which are the building block for small inhibitory-excitatory networks, such as central pattern generators controlling various locomotive behaviors of animals. We discover that the pacemaker determining the specific rhythm of such a network composed of realistic Hodgkin–Huxley-type neurons is identified through the order parameter, which is the ratio of the neurons’ burst durations or of duty cycles. We analyze different configurations of the motifs and describe the universal mechanisms for synergetics of the bursting patterns. We discuss also the multistability of inhibitory networks that results in polyrhythmicity of its emergent synchronous behaviors.

1.
L.
Glass
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
10409
(
2005
).
2.
E.
Marder
and
R. L.
Calabrese
,
Physiol. Rev.
76
,
687
(
1996
).
3.
C. M.
Gray
and
W.
Singer
,
Proc. Natl. Acad. Sci. U.S.A.
86
,
1698
(
1989
).
4.
M.
Bazhenov
,
M.
Stopfer
,
M.
Rabinovich
,
R.
Huerta
,
H. D. I.
Abarbanel
,
T. J.
Sejnowski
, and
G.
Laurent
,
Neuron
30
,
553
(
2001
).
5.
M. R.
Mehta
,
A. K.
Lee
, and
M. A.
Wilson
,
Nature (London)
417
,
741
(
2002
).
6.
J.
Rinzel
,
Lecture Notes in Biomathematics
(
Springer-Verlag
,
Berlin
,
1987
), Vol.
71
, pp.
251
291
.
7.
D.
Terman
,
SIAM J. Appl. Math.
51
,
1418
(
1991
).
8.
V. N.
Belykh
,
I. V.
Belykh
,
M.
Colding-Joergensen
, and
E.
Mosekilde
,
Eur. Phys. J. E
3
,
205
(
2000
).
9.
E. M.
Izhikevich
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
10
,
1171
(
2000
).
10.
A.
Shilnikov
and
G.
Cymbalyuk
,
Phys. Rev. Lett.
94
,
048101
(
2005
).
11.
A.
Shilnikov
,
R.
Calabrese
, and
G.
Cymbalyuk
,
Phys. Rev. E
71
,
056214
(
2005
).
12.
P.
Chanell
,
G.
Cymbalyuk
, and
A.
Shilnikov
,
Phys. Rev. Lett.
98
,
134101
(
2007
).
13.
E. M.
Izhikevich
,
SIAM Rev.
43
,
315
(
2001
).
14.
C.
van Vreeswijk
and
D.
Hansel
,
Neural Comput.
13
,
959
(
2001
).
15.
M.
Dhamala
,
V. K.
Jirsa
, and
M.
Ding
,
Phys. Rev. Lett.
92
,
028101
(
2004
).
16.
I.
Belykh
,
E.
de Lange
, and
M.
Hasler
,
Phys. Rev. Lett.
94
,
188101
(
2005
).
17.
X.-J.
Wang
and
J.
Rinzel
,
Neural Comput.
4
,
84
(
1992
).
18.
D.
Golomb
and
J.
Rinzel
,
Phys. Rev. E
48
,
4810
(
1993
).
19.
D.
Terman
,
N.
Kopell
, and
A.
Bose
,
Physica D
117
,
241
(
1998
).
20.
R. C.
Elson
,
A. I.
Selverston
,
H. D. I.
Abarbanel
, and
M. I.
Rabinovich
,
J. Neurophysiol.
88
1166
(
2002
).
21.
J.
Rubin
and
D.
Terman
,
SIAM J. Appl. Dyn. Syst.
1
,
146
(
2002
).
22.
N.
Kopell
and
G. B.
Ermentrout
, in
Handbook of Dynamical Systems
, edited by
B.
Fiedler
(
Elsevier
,
Amsterdam
,
2002
), Vol.
2
, pp.
3
54
.
23.
T.
Lewis
and
J.
Rinzel
,
J. Comput. Neurosci.
14
,
283
(
2003
).
24.
N.
Kopell
and
G. B.
Ermentrout
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
15482
(
2004
).
25.
M.
Bazhenov
,
N.
Rulkov
,
J.-M.
Fellous
, and
I.
Timofeev
,
Phys. Rev. E
72
,
041903
(
2005
).
26.
M. I.
Rabinovich
,
P.
Varona
,
A. I.
Selverston
, and
H. D. I.
Abarbanel
,
Rev. Mod. Phys.
78
,
1213
(
2006
).
27.
J.
Rubin
and
D.
Terman
,
Neural Comput.
12
,
597
(
2000
).
28.
I.
Belykh
and
A.
Shilnikov
, “
When inhibition synchronizes strongly desynchronizing networks of bursting neurons
,”
Phys. Rev. Lett.
(accepted).
29.
G. S.
Cymbalyuk
,
Q.
Gaudry
,
M. A.
Masino
, and
R. L.
Calabrese
,
J. Neurosci.
22
,
10580
(
2002
).
30.
O.
Spoorns
and
R.
Kötter
,
PLoS Biol.
2
,
e369
(
2004
).
31.
R.
Milo
,
S.
Shen-Orr
,
S.
Itzkovitz
,
N.
Kashtan
,
D.
Chklovskii
, and
U.
Alon
,
Science
298
,
824
(
2002
).
32.
M.
Barahona
and
L. M.
Pecora
,
Phys. Rev. Lett.
89
,
054101
(
2002
).
33.
V. N.
Belykh
,
I. V.
Belykh
, and
M.
Hasler
,
Physica D
195
,
159
(
2004
).
34.
I. V.
Belykh
,
V. N.
Belykh
, and
M.
Hasler
,
Physica D
195
,
188
(
2004
).
35.
L.
Zemanova
,
C.
Zhou
, and
J.
Kurths
,
Physica D
224
,
202
(
2006
).
36.
I.
Lodato
,
S.
Boccaletti
, and
V.
Latora
,
Europhys. Lett.
78
28001
(
2007
).
37.
A. Yu.
Pogromsky
,
G.
Santoboni
, and
H.
Nijmeijer
,
Physica D
172
,
65
(
2002
).
38.
I. V.
Belykh
,
V. N.
Belykh
,
K. V.
Nevidin
, and
M.
Hasler
,
Chaos
13
,
165
(
2003
).
39.
M.
Golubitsky
,
I.
Stewart
, and
A.
Torok
,
SIAM J. Appl. Dyn. Syst.
4
,
78
(
2005
).
40.
M.
Golubitsky
and
I.
Stewart
,
Bull., New Ser., Am. Math. Soc.
43
,
305
(
2006
).
41.
Y.
Wang
and
M.
Golubitsky
,
Nonlinearity
18
,
631
(
2005
).
42.
V.
Matveev
,
A.
Bose
, and
F.
Nadim
,
J. Comput. Neurosci.
23
,
169
(
2007
).
43.
G. S.
Cymbalyuk
and
R. L.
Calabrese
,
Neurocomputing
38–40
,
159
(
2001
).
44.
D.
Somers
and
N.
Kopell
,
Biol. Cybern.
68
,
393
(
1993
).
45.
A. N.
Tikhonov
,
Mat. Sb.
22
,
193
(
1948
).
46.
L. S.
Pontryagin
and
L. V.
Rodygin
,
Sov. Math. Dokl.
1
,
611
(
1960
).
47.
N.
Fenichel
,
J. Differ. Equations
31
,
53
(
1979
).
48.
D. V.
Turaev
and
L. P.
Shilnikov
,
Dokl. Math.
51
,
404
(
1995
).
49.
A.
Shilnikov
,
L.
Shilnikov
, and
D.
Turaev
,
Mosc. Math. J.
5
,
205
(
2005
).
50.
A.
Shilnikov
and
G.
Cymbaluyk
,
Regular Chaotic Dyn.
3
(
9
),
281
(
2004
).
51.
A. L.
Shilnikov
,
R.
Calabrese
, and
G.
Cymbaluyk
,
Neurocomputing
65
,
869
(
2005
).
52.
G.
Cymbalyuk
and
A. L.
Shilnikov
,
J. Comput. Neurosci.
18
,
255
(
2005
).
53.
T. G.
Brown
,
Proc. R. Soc., London, Ser. B
84
,
308
(
1911
).
54.
T.
Nowotny
and
M. I.
Rabinovich
,
Phys. Rev. Lett.
98
,
128106
(
2007
).
55.
K. L.
Briggman
and
W. B.
Kristan
, Jr.
,
Annu. Rev. Neurosci.
31
,
271
(
2008
).
You do not currently have access to this content.