It is shown that, in the infinite size limit, certain systems of globally coupled phase oscillators display low dimensional dynamics. In particular, we derive an explicit finite set of nonlinear ordinary differential equations for the macroscopic evolution of the systems considered. For example, an exact, closed form solution for the nonlinear time evolution of the Kuramoto problem with a Lorentzian oscillator frequency distribution function is obtained. Low dimensional behavior is also demonstrated for several prototypical extensions of the Kuramoto model, and time-delayed coupling is also considered.

1.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kürths
,
Synchronization: A Universal Concept in Nonlinear Science
(
Cambridge University Press
,
Cambridge
,
2001
);
S. H.
Strogatz
,
Sync: The Emerging Science of Spontaneous Order
(
Penguin Science
,
New York
,
2004
);
S.
Boccaletti
,
J.
Kürths
,
G.
Osipov
,
D. L.
Valladeres
, and
C. S.
Zhou
,
Phys. Rep.
366
,
1
(
2002
).
2.
S.
Yamaguchi
,
H.
Isejima
,
T.
Matsuo
,
R.
Okura
,
K.
Yagita
,
M.
Kobayashi
, and
H.
Okamura
,
Science
302
,
1408
(
2003
).
3.
I. Z.
Kiss
,
Y.
Zhai
, and
J. L.
Hudson
,
Science
296
,
1676
(
2005
).
4.
K.
Wiesenfeld
and
J. W.
Swift
,
Phys. Rev. E
51
,
1020
(
1995
).
5.
J.
Pantaleone
,
Phys. Rev. D
58
,
073002
(
1998
).
6.
R.
Häubler
,
R.
Bartussek
, and
P.
Hänggi
,
AIP Conf. Proc.
411
,
243
(
1997
).
7.
Y.
Kuramoto
, in
International Symposium on Mathematical Problems in Theoretical Physics
,
Lecture Notes in Physics
, edited by
H.
Araki
(
Springer-Verlag
,
Berlin
,
1975
), Vol.
39
;
Chemical Oscillations, Waves and Turbulence
(
Springer
,
New York
,
1984
).
8.
For reviews of the Kuramoto model, see
E.
Ott
,
Chaos in Dynamical Systems
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2002
), Chap. 6;
J. A.
Acebron
,
L. L.
Bonilla
,
C. J. P.
Vincente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
9.
H.
Sakaguchi
,
Prog. Theor. Phys.
79
,
39
(
1988
);
H.
Kori
and
A. S.
Mikhailov
,
Phys. Rev. E
74
,
066115
(
2006
).
10.
T. M.
Antonsen
, Jr.
,
R.
Faghih
,
M.
Girvan
,
E.
Ott
, and
J.
Platig
,
Chaos
18
,
037112
(
2008
) (this issue).
11.
E.
Barreto
,
B.
Hunt
,
E.
Ott
, and
P.
So
,
Phys. Rev. E
77
,
036107
(
2008
).
12.
E.
Montbrio
,
J.
Kürths
, and
B.
Blasius
,
Phys. Rev. E
70
,
056125
(
2004
).
13.
E. A.
Coddington
and
N.
Levinson
,
Theory of Ordinary Differential Equations
(
McGraw-Hill
,
New York
,
1955
), Theorem 8.4 of Chap. 1.
14.

This follows by noting that the Cauchy–Riemann conditions imply that the complex function α(ωr+iωi,0) satisfies Laplace’s equation in ω, ω2α(ωr+iωi,0)=0, where ω2=2ωr2+2ωi2. Setting α=αeiψ, this gives ω2α=α[(ψωr)2+(ψωi)2]. Since ω2α0 in ωi<0, α cannot assume a maximum anywhere interior to the lower-half complex ω-plane. Hence the maximum value of α in ωi0 must occur on ωi=0, i.e., on the real ω-axis.

15.
R.
Mirollo
and
S. H.
Strogatz
,
J. Nonlinear Sci.
17
,
309
(
2007
).
16.
S. H.
Strogatz
,
R. E.
Mirollo
, and
P. C.
Matthews
,
Phys. Rev. Lett.
68
,
2730
(
1992
).
17.
E.
Niebur
,
H. G.
Schuster
, and
D. M.
Kammen
,
Phys. Rev. Lett.
67
,
2753
(
1991
);
[PubMed]
S.
Kim
,
S. H.
Park
, and
C. S.
Ryu
,
Phys. Rev. Lett.
79
,
2911
(
1997
);
H.
Kori
and
Y.
Kuramoto
,
Phys. Rev. E
63
,
046214
(
2001
);
E.
Montbrió
,
D.
Pazo
, and
J.
Schmidt
,
Phys. Rev. E
74
,
056201
(
2006
).
18.
M. K. S.
Yeung
and
S. H.
Strogatz
,
Phys. Rev. Lett.
82
,
648
(
1999
);
to put Eq. (17) in the notation of this reference, make the replacement s+iω0s.
19.
M.
Choi
,
H. J.
Kim
,
D.
Kim
, and
H.
Hong
,
Phys. Rev. E
61
,
371
(
2000
).
20.
B.
Eckhardt
,
E.
Ott
,
S. H.
Strogatz
,
D. M.
Abrams
, and
A.
McRobie
,
Phys. Rev. E
75
,
021110
(
2007
).
21.
Y.
Kuramoto
and
I.
Nishikawa
,
J. Stat. Phys.
49
,
569
(
1986
).
22.
J. D.
Crawford
,
J. Stat. Phys.
74
,
1047
(
1994
).
23.
S.
Watanabe
and
S. H.
Strogatz
,
Phys. Rev. Lett.
70
,
2391
(
1993
);
[PubMed]
S.
Watanabe
and
S. H.
Strogatz
,
Physica D
74
,
197
(
1994
).
24.

While the time-asymptotic behavior of the order-parameter obtained from the dynamics of the full system is seen to correspond to the attractors of the reduced systems (10) and (13) [where Eq. (13) is treated in Ref. 10], we emphasize that M does not need to be attracting for the microscopic state f(ω,θ,t). This can be simply seen in the case of the Kuramoto problem (4), for which f(ω,θ,t)=[g(ω)2π]{1+mβm(ω)exp[im(θωt)]} and r(t)=0 for all t is a solution for β±1(ω)=0 and any choice of perturbations βm(ω), m2.

You do not currently have access to this content.