A concept of orbit spectral density for a one-dimensional iterated function is presented. To compute orbit spectral density, a method of extracting low-order periodic orbits from the dynamical system defined by the iterated function is first used. All points of the dynamics are then partitioned among the periodic orbits according to a distance measure. Partition sizes estimate the density of trajectories around periodic orbits. Assigning these trajectory densities to the orbit indexes introduces the orbit spectral density. A practical computational example is presented in the context of a model olfactory system.

1.
J. P.
Rospars
,
P.
Lansky
,
P.
Duchamp-Viret
, and
A.
Duchamp
,
BioSystems
58
,
133
(
2000
).
2.
A. G.
Lozowski
,
M.
Lysetskiy
, and
J. M.
Zurada
,
IEEE Trans. Neural Netw.
15
,
1268
(
2004
).
3.
R. W.
Friedrich
and
G.
Laurent
,
Science
291
,
889
(
2001
).
4.
T. A.
Dickinson
,
J.
White
,
J. S.
Kauer
, and
D. R.
Walt
,
Trends Biotechnol.
16
,
250
(
1998
).
5.
P.
Thiran
and
M.
Hasler
,
Int. J. Circuit Theory Appl.
24
,
57
(
1996
).
6.
W. J.
Freeman
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
2
,
451
(
1992
).
7.
M.
Hasler
, in
Proceedings of the 1997 IEEE International Symposium on Circuits and Systems
, Hong Kong (
IEEE
, Piscataway, NJ,
1997
), pp.
1045
1048
.
8.
D.
Pingel
,
P.
Schmelcher
, and
F. K.
Diakonos
,
Chaos
9
,
357
(
2000
).
You do not currently have access to this content.