The parameter perturbation methods (the most known being the OGY method) apply small wisely chosen swift kicks to the system once per cycle, to maintain it near the desired unstable periodic orbit. Thus, one can consider that a new attractor is finally generated. Another class of methods which allow the attractors born, imply small perturbations of the state variable [see, e.g., J. Güémez and M. A. Matías, Phys. Lett. A181, 29 (1993)]. Whatever technique is utilized, generating any targeted attractor starting from a set of two or more of any kind of attractors (stable or not) of a considered dissipative continuous-time system cannot be achieved with these techniques. This kind of attractor synthesis [introduced in M.-F. Danca, W. K. S. Tang, and G. Chen, Appl. Math. Comput.201, 650 (2008) and proved analytically in Y. Mao, W. K. S. Tang, and M.-F. Danca, Appl. Math. Comput. (submitted)] which starts from a set of given attractors, allows us, via periodic parameter-switching, to generate any of the set of all possible attractors of a class of continuous-time dissipative dynamical systems, depending linearly on the control parameter. In this paper we extend this technique proving empirically that even random manners for switching can be utilized for this purpose. These parameter-switches schemes are very easy to implement and require only the mathematical model of the underlying dynamical system, a convergent numerical method to integrate the system, and the bifurcation diagram to choose specific attractors. Relatively large parameter switches are admitted. As a main result, these switching algorithms (deterministic or random) offer a new perspective on the set of all attractors of a class of dissipative continuous-time dynamical systems.

1.
M.-F.
Danca
,
W. K. S.
Tang
, and
G.
Chen
,
Appl. Math. Comput.
201
,
650
(
2008
).
2.
J.
Almeida
,
D.
Peralta-Salas
, and
M.
Romera
,
Physica D
200
,
124
(
2005
).
3.
M.-F.
Danca
and
M.
Romera
,
Dyn. Contin. Discrete Impulsive Syst.: Ser. B
14
,
155
(
2008
).
4.
M.
Romera
,
M.
Small
, and
M.-F.
Danca
,
Appl. Math. Comput.
192
,
283
(
2007
).
5.
C.
Foias
and
M. S.
Jolly
,
Nonlinearity
8
,
295
(
1995
).
6.
J. K.
Hale
,
Topics in Dynamic Bifurcation Theory
(
American Mathematical Society
,
New York
,
1981
), CBMS 47.
7.
B.
Fiedler
and
C.
Rocha
,
Trans. Am. Math. Soc.
352
,
257
(
1999
).
8.
D. A.
Salamon
, IAS/Park City Mathematics Series, Vol.
7
, pp.
145
229
(
1999
).
9.
J.
Christy
,
Trans. Am. Math. Soc.
336
,
759
(
1993
).
10.
L.
Kapitanski
and
I.
Rodnianski
,
Commun. Math. Phys.
53
,
218
(
2000
).
11.
C.
Letellier
and
G.
Gouesbet
,
J. Phys. IV
6
,
1615
(
1996
).
12.
Y.
Mao
,
W. K. S.
Tang
, and
M.-F.
Danca
,
Appl. Math. Comput.
(submitted).
13.
A. M.
Stuart
and
A. R.
Humphries
,
Dynamical Systems and Numerical Analysis
(
Cambridge University Press
,
Cambridge
,
1996
), Chap. 4.
14.
O. E.
Rössler
, “
Chaos, hyperchaos and double-perspective
,” in
The Chaos Avant-Garde: Memories of the Early Days of Chaos Theory
, edited by
R.
Abraham
and
Y.
Ueda
(
World Scientific
,
Singapore
,
2000
).
15.
J. K.
Hale
and
N. M.
Stavrakakis
,
Appl. Anal.
26
,
271
(
1998
).
16.
M. W.
Hirsch
and
C. C.
Pugh
, “
Stable manifolds and hyperbolic sets
,” in
Proceedings of the Symposium on Pure Mathematics 14
(
American Mathematical Society
,
New York
,
1970
), pp.
133
164
.
17.
M. W.
Hirsch
,
S.
Smale
, and
R. L.
Devaney
,
Differential Equations, Dynamical Systems and An Introduction to Chaos
, 2nd ed. (
Elsevier
,
New York
,
2004
).
18.
J.
Milnor
,
Commun. Math. Phys.
99
,
177
(
1985
).
19.
A.
Segatti
,
Discrete Contin. Dyn. Syst.
14
,
801
(
2006
).
20.
G.
Chen
and
T.
Ueta
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
9
,
1465
(
1999
).
21.
X.
Luo
,
M.
Small
,
M.-F.
Danca
, and
G.
Chen
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
17
,
3235
(
2007
).
You do not currently have access to this content.