We describe a simple method to control a known unstable periodic orbit (UPO) in the presence of noise. The strategy is based on regarding the control method as an optimization problem, which allows us to calculate a control matrix . We illustrate the idea with the Rossler system, the Lorenz system, and a hyperchaotic system that has two exponents with positive real parts. Initially, a UPO and the corresponding control matrix are found in the absence of noise in these systems. It is shown that the strategy is useful even if noise is added as control is applied. For low noise, it is enough to find a control matrix such that the maximum Lyapunov exponent , and with a single non-null entry. If noise is increased, however, this is not the case, and the full control matrix may be required to keep the UPO under control. Besides the Lyapunov spectrum, a characterization of the control strategies is given in terms of the average distance to the UPO and the control effort required to keep the orbit under control. Finally, particular attention is given to the problem of handling noise, which can affect considerably the estimation of the UPO itself and its exponents, and a cleaning strategy based on singular value decomposition was developed. This strategy gives a consistent manner to approach noisy systems, and may be easily adapted as a parametric control strategy, and to experimental situations, where noise is unavoidable.
Skip Nav Destination
Article navigation
September 2008
Research Article|
July 21 2008
Optimal control in a noisy system
F. Asenjo;
F. Asenjo
Departamento de Física, Facultad de Ciencias,
Universidad de Chile
, Santiago, Chile
Search for other works by this author on:
B. A. Toledo;
B. A. Toledo
Departamento de Física, Facultad de Ciencias,
Universidad de Chile
, Santiago, Chile
Search for other works by this author on:
V. Muñoz;
V. Muñoz
Departamento de Física, Facultad de Ciencias,
Universidad de Chile
, Santiago, Chile
Search for other works by this author on:
J. Rogan;
J. Rogan
Departamento de Física, Facultad de Ciencias,
Universidad de Chile
, Santiago, Chile
Search for other works by this author on:
J. A. Valdivia
J. A. Valdivia
Departamento de Física, Facultad de Ciencias,
Universidad de Chile
, Santiago, Chile
Search for other works by this author on:
Chaos 18, 033106 (2008)
Article history
Received:
March 10 2008
Accepted:
June 17 2008
Citation
F. Asenjo, B. A. Toledo, V. Muñoz, J. Rogan, J. A. Valdivia; Optimal control in a noisy system. Chaos 1 September 2008; 18 (3): 033106. https://doi.org/10.1063/1.2956981
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
Citing articles via
Related Content
Reliability of unstable periodic orbit based control strategies in biological systems
Chaos (April 2015)
Tracking control and synchronization of four-dimensional hyperchaotic Rössler system
Chaos (September 2006)
Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation
Chaos (October 2015)
Decomposing the dynamics of the Lorenz 1963 model using unstable periodic orbits: Averages, transitions, and quasi-invariant sets
Chaos (March 2022)
A dynamical systems approach to the control of chaotic dynamics in a spatiotemporal jet flow
Chaos (September 2013)