The paper investigates generic three-dimensional nonsmooth systems with a periodic orbit near grazing-sliding. We assume that the periodic orbit is unstable with complex multipliers so that two dominant frequencies are present in the system. Because grazing-sliding induces a dimension loss and the instability drives every trajectory into sliding, the system has an attractor that consists of forward sliding orbits. We analyze this attractor in a suitably chosen Poincaré section using a three-parameter generalized map that can be viewed as a normal form. We show that in this normal form the attractor must be contained in a finite number of lines that intersect in the vertices of a polygon. However the attractor is typically larger than the associated polygon. We classify the number of lines involved in forming the attractor as a function of the parameters. Furthermore, for fixed values of parameters we investigate the one-dimensional dynamics on the attractor.

1.
P.
Armstrong-Hélouvry
,
P.
DuPont
, and
C. C.
de Wit
, “
A survey of models, analysis tools and compensation methods for the control of machines with friction
,”
Automatica
30
,
1083
1138
(
1994
).
2.
D. K.
Campbell
,
R.
Galeeva
, and
C.
Tresser
, “
Piecewise linear models for the quasiperiodic transition to chaos
,”
Chaos
6
,
121
154
(
1996
).
3.
P.
Casini
,
O.
Giannini
, and
F.
Vestroni
, “
Experimental evidence of non-standard bifurcations in non-smooth oscillator dynamics
,”
Nonlinear Dyn.
46
,
259
272
(
2006
).
4.
G.
Csernák
and
G.
Stépán
, “
On the periodic response of a harmonically excited dry friction oscillator
,”
J. Sound Vib.
295
,
649
658
(
2006
).
5.
H.
Dankowicz
,
P.
Piiroinen
, and
A. B.
Nordmark
, “
Low-velocity impacts of quasiperiodic oscillations
,”
Chaos, Solitons Fractals
14
,
241
255
(
2002
).
6.
M.
di Bernardo
,
C. J.
Budd
,
A. R.
Champneys
, and
P.
Kowalczyk
,
Bifurcation and Chaos in Piecewise-smooth Dynamical Systems: Theory and Applications
(
Springer
,
Berlin
,
2007
).
7.
M.
di Bernardo
,
P.
Kowalczyk
, and
A.
Nordmark
, “
Sliding bifurcations: A novel mechanism for sudden onset of chaos in dry friction oscillators
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
13
,
2935
2948
(
2003
).
8.
B.
Feeny
and
F. C.
Moon
, “
Chaos in a forced dry friction oscillator: Experiments and numerical modelling
,”
J. Sound Vib.
170
,
303
323
(
1994
).
9.
A. F.
Filippov
,
Differential Equations with Discontinuous Right-Hand Sides
(
Kluwer
,
Dordrecht
,
1988
).
10.
S. J.
Hogan
,
L.
Higham
, and
T. C. L.
Griffin
, “
Dynamics of a piecewise linear map with a gap
,”
Proc. R. Soc. London, Ser. A
463
,
49
65
(
2007
).
11.
A. J.
Homburg
, “
Piecewise smooth interval maps with non-vanishing derivative
,”
Ergod. Theory Dyn. Syst.
20
,
749
773
(
2000
).
12.
A. C. J.
Luo
and
B. C.
Gegg
, “
Stick and non-stick periodic motions in periodically forced oscillators with dry friction
,”
J. Sound Vib.
291
,
132
168
(
2006
).
13.
J.
Moser
,
Stable and Random Motions in Dynamical Systems
(
Princeton University Press
,
Princeton
,
1973
).
14.
S.
Narayanan
and
K.
Jayaraman
, “
Chaotic vibration in a nonlinear oscillator with Coulomb damping
,”
J. Sound Vib.
146
,
17
31
(
1991
).
15.
A. B.
Nordmark
, “
Nonperiodic motion caused by grazing incidence in an impact oscillator
,”
J. Sound Vib.
145
,
279
297
(
1991
).
16.
B.
Novák
,
Z.
Pataki
,
A.
Ciliberto
, and
J. J.
Tyson
, “
Mathematical model of the cell division cycle of fission yeast
,”
Chaos
11
,
277
286
(
2001
).
17.
J.
Nussbaum
and
A.
Ruina
, “
A two degree-of-freedom earthquake model with static/dynamic friction
,”
Pure Appl. Geophys.
125
,
629
656
(
1987
).
18.
M.
Oestreich
,
N.
Hinrichs
, and
K.
Popp
, “
Bifurcation and stability analysis for a nonsmooth friction oscillator
,”
Arch. Appl. Mech.
66
,
301
314
(
1996
).
19.
P. T.
Piiroinen
and
Y. A.
Kuznetsov
, “
An event-driven method to simulate Filippov systems with accurate computing of sliding motions
,”
ACM Trans. Math. Softw.
(to be published).
20.
K.
Popp
and
P.
Stelter
, “
Stick-slip vibration and chaos
,”
Philos. Trans. R. Soc. London
332
,
89
105
(
1990
).
21.
J.
Sieber
,
P.
Kowalczyk
,
S. J.
Hogan
, and
M.
di Bernardo
, “
Dynamics of symmetric hybrid dynamical systems with delay
(special issue), preprint, pages
1
29
,
2007
, http://www.abdn.ac.uk/~eng824/documents/SKHD07.pdf
22.
R.
Stribeck
, “
Die wesentlischen Eigenschaften der Gleit- und Rollenlager
,”
Zeitschrift des Vereines deutscher Ingenieure
(pt I)
46
,
1341
1348
(
1902
);
R.
Stribeck
, “
Die wesentlischen Eigenschaften der Gleit- und Rollenlager
,”
Zeitschrift des Vereines deutscher Ingenieure
(pt II)
46
,
1432
1438
(
1902
);
R.
Stribeck
, “
Die wesentlischen Eigenschaften der Gleit- und Rollenlager
,”
Zeitschrift des Vereines deutscher Ingenieure
(pt III)
46
,
1463
1470
(
1902
).
23.
I.
Sushko
,
T.
Puu
, and
L.
Gradini
,
The Hicksian floor-roof model for two regions linked by interregional trade, Chaos
,
Chaos, Solitons Fractals
18
,
593
612
(
2003
).
24.
P.
Thota
and
H.
Dankowicz
, “
Continuous and discontinuous grazing bifurcations in impacting oscillators
,”
Physica D
214
,
187
197
(
2005
).
25.
V. I.
Utkin
,
Sliding Modes in Control and Optimization
(
Springer
,
Berlin
,
1992
).
26.
S.
Wiggins
,
Global Bifurcations and Chaos
(
Springer
,
Berlin
,
1988
).
27.
Z. T.
Zhusubaliyev
and
E.
Mosekilde
, “
Torus birth bifurcations in a DC/DC converter
,”
IEEE Trans. Circuits Syst., I: Regul. Pap.
53
,
1839
1850
(
2006
).
28.
Z. T.
Zhusubaliyev
,
E.
Mosekilde
,
S.
Maity
,
S.
Mohanan
, and
S.
Banerjee
, “
Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation
,”
Chaos
16
,
023122
(
2006
).
You do not currently have access to this content.