We investigate the organization of mixed-mode oscillations in the self-coupled FitzHugh-Nagumo system. These types of oscillations can be explained as a combination of relaxation oscillations and small-amplitude oscillations controlled by canard solutions that are associated with a folded singularity on a critical manifold. The self-coupled FitzHugh-Nagumo system has a cubic critical manifold for a range of parameters, and an associated folded singularity of node-type. Hence, there exist corresponding attracting and repelling slow manifolds that intersect in canard solutions. We present a general technique for the computation of two-dimensional slow manifolds (smooth surfaces). It is based on a boundary value problem approach where the manifolds are computed as one-parameter families of orbit segments. Visualization of the computed surfaces gives unprecedented insight into the geometry of the system. In particular, our techniques allow us to find and visualize canard solutions as the intersection curves of the attracting and repelling slow manifolds.

1.
V.
Petrov
,
S. K.
Scott
, and
K.
Showalter
,
J. Chem. Phys.
97
,
6191
(
1992
).
2.
A.
Milik
,
P.
Szmolyan
,
H.
Löffelmann
, and
E.
Gröller
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
8
,
505
(
1998
).
3.
M.
Wechselberger
,
SIAM J. Appl. Dyn. Syst.
4
,
101
(
2005
).
4.
M.
Brøns
,
M.
Krupa
, and
M.
Wechselberger
, in
Fields Institute Communications
(
Amer. Math. Soc.
,
Providence
,
2006
), Vol.
49
, pp.
39
63
.
5.
J.
Rubin
and
M.
Wechselberger
,
Biol. Cybern.
97
,
5
(
2007
).
6.
A.
Willms
and
J.
Guckenheimer
,
Physica D
139
,
195
(
2000
).
7.
B.
Krauskopf
,
H. M.
Osinga
, and
J.
Galán-Vioque
,
Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems
(
Springer-Verlag
,
New York
,
2007
).
8.
M.
Desroches
,
B.
Krauskopf
, and
H. M.
Osinga
, preprint (
2007
).
9.
E.
Benoît
, “
Troisième rencontre du Schnepfenried
,” Vol.
109–110
of
Astérisque
(
Soc. Math. France
,
Paris
,
1983
), pp.
159
191
.
10.
P.
Szmolyan
and
M.
Wechselberger
,
J. Differ. Equations
177
,
419
(
2001
).
11.
J.
Guckenheimer
and
R.
Haiduc
,
Mosc. Math. J.
5
,
91
(
2005
).
12.
W.
Eckhaus
,
Asymptotic Analysis II
, Vol.
958
of
Lecture Notes in Math.
(
Springer-Verlag
,
New York
,
1983
), pp.
449
494
.
13.
R.
Roussarie
, in
Bifurcations and Periodic Orbits of Vector Fields
, edited by
D.
Szlomiuk
(
Kluwer Academic
,
Dordrecht
,
1993
), pp.
347
382
.
14.
C. K. R. T.
Jones
,
Dynamical Systems, C.I.M.E Lectures, Montecatini Terme, June 1994
, Vol.
1609
of
Lecture Notes in Math.
(
Springer-Verlag
,
New York
,
1995
), pp.
44
120
.
15.
F.
Dumortier
and
R.
Roussarie
, ‘‘
Canard cycles and center manifolds
,”
Mem. Am. Math. Soc.
121
(
1996
).
16.
P.
Szmolyan
and
M.
Wechselberger
,
J. Differ. Equations
200
,
69
(
2004
).
17.
J.
Guckenheimer
,
K. A.
Hoffman
, and
W.
Weckesser
,
SIAM J. Appl. Dyn. Syst.
2
,
1
(
2003
).
18.
K.
Bold
,
C.
Edwards
,
J.
Guckenheimer
,
S.
Guharay
,
K.
Hoffman
,
J.
Hubbard
,
R.
Oliva
, and
W.
Weckesser
,
SIAM J. Appl. Dyn. Syst.
2
,
570
(
2003
).
19.
N.
Fenichel
,
J. Differ. Equations
31
,
53
(
1979
).
21.
E. J.
Doedel
,
Congr. Numer.
30
,
265
(
1981
).
22.
E. J.
Doedel
,
R. C.
Paffenroth
,
A. R.
Champneys
,
T. F.
Fairgrieve
,
Y. A.
Kuznetsov
,
B. E.
Oldeman
,
B.
Sandstede
, and
X. J.
Wang
, available via http://cmvl.cs.concordia.ca/
23.
B.
Krauskopf
and
H. M.
Osinga
, in
Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems
, edited by
B.
Krauskopf
,
H. M.
Osinga
, and
J.
Galán-Vioque
(
Springer-Verlag
,
New York
,
2007
), pp.
117
154
.
24.
J.
Rubin
and
D.
Terman
, in
Handbook of Dynamical Systems
, edited by
B.
Fiedler
(
North-Holland
,
Amsterdam
,
2002
), Vol.
2
, pp.
93
146
.
25.
J.
Moehlis
,
J. Nonlinear Sci.
12
,
319
(
2002
).
You do not currently have access to this content.