Experimental data from an excised larynx are analyzed in the light of nonlinear dynamics. The excised larynx provides an experimental framework that enables artificial control and direct observation of the vocal fold vibrations. Of particular interest in this experiment is the coexistence of two distinct vibration patterns, which closely resemble chest and falsetto registers of the human voice. Abrupt transitions between the two registers are typically accompanied by irregular vibrations. Two approaches are presented for the modeling of the excised larynx experiment; one is the nonlinear predictive modeling of the experimental time series and the other is the biomechanical modeling (three-mass model) that takes into account basic mechanisms of the vocal fold vibrations. The two approaches show that the chest and falsetto vibrations correspond to two coexisting limit cycles, which jump to each other with a change in the bifurcation parameter. Irregular vibrations observed at the register jumps are due to chaos that exists near the two limit cycles. This provides an alternative mechanism to generate chaotic vibrations in excised larynx experiment, which is different from the conventionally known mechanisms such as strong asymmetry between the left and right vocal folds or excessively high subglottal pressure.

1.
I. R.
Titze
,
Principles of Voice Production
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1994
).
2.
H.
Herzel
,
D.
Berry
,
I. R.
Titze
, and
I.
Steinecke
, “
Nonlinear dynamics of the voice
,”
Chaos
5
,
30
(
1995
).
3.
I.
Tokuda
and
H.
Herzel
, “
Detecting synchronizations in an asymmetric vocal fold model from time series data
,”
Chaos
15
,
013702
(
2005
).
4.
I.
Steinecke
and
H.
Herzel
, “
Bifurcations in an asymmetric vocal fold model
,”
J. Acoust. Soc. Am.
97
,
1571
(
1995
).
5.
I. R.
Titze
,
R. J.
Baken
, and
H.
Herzel
, “
Evidence of chaos in vocal fold vibration
,” in
Vocal Fold Physiology
, edited by
I. R.
Titze
(
Singular
,
San Diego
,
1993
), pp.
143
188
.
6.
H.
Herzel
,
D.
Berry
,
I. R.
Titze
, and
S.
Saleh
, “
Analysis of vocal disorders with methods from nonlinear dynamics
,”
J. Speech Hear. Res.
37
,
1008
(
1994
).
7.
J.
Neubauer
,
E.
Edgerton
, and
H.
Herzel
, “
Nonlinear phenomena in contemporary vocal music
,”
J. Voice
18
,
1
(
2004
).
8.
I.
Wilden
,
H.
Herzel
,
G.
Peters
, and
G.
Tembrock
, “
Subharmonics, biphonation, and deterministic chaos in mammal vocalization
,”
Bioacoustics
9
,
171
(
1998
).
9.
M. S.
Fee
,
B.
Shraiman
,
B.
Pesaran
, and
P. P.
Mitra
, “
The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird
,”
Nature (London)
395
,
67
(
1998
).
10.
T.
Fitch
,
H.
Herzel
,
J.
Neubauer
, and
M.
Hauser
, “
Calls out of chaos: The adaptive significance of nonlinear phenomena in primate vocal production
,”
Anim. Behav.
63
,
407
(
2002
).
11.
P.
Mergell
,
W. T.
Fitch
, and
H.
Herzel
, “
Modeling the role of non-human vocal membranes on phonation
,”
J. Acoust. Soc. Am.
105
,
2020
(
1999
).
12.
I.
Tokuda
,
T.
Riede
,
J.
Neubauer
,
M. J.
Owren
, and
H.
Herzel
, “
Nonlinear analysis of irregular animal vocalizations
,”
J. Acoust. Soc. Am.
111
,
2908
(
2002
).
13.
J.
van den Berg
, “
Sound productions in isolated human larynges
,”
Ann. N.Y. Acad. Sci.
155
,
18
(
1968
).
14.
J. G.
Švec
,
H. K.
Schutte
, and
D. G.
Miller
, “
On pitch jumps between chest and falsetto registers in voice: Data from living and excised human larynges
,”
J. Acoust. Soc. Am.
106
,
1523
(
1999
).
15.
D. A.
Berry
,
H.
Herzel
,
I. R.
Titze
, and
B. H.
Story
, “
Bifurcations in excised larynx experiments
,”
J. Voice
10
,
129
(
1996
).
16.
J. J.
Jiang
,
Y.
Zhang
, and
C. N.
Ford
, “
Nonlinear dynamics of phonations in excised larynx experiments
,”
J. Acoust. Soc. Am.
114
,
2198
(
2003
).
17.
Y.
Zhang
and
J. J.
Jiang
, “
Spatiotemporal chaos in excised larynx vibrations
,”
Phys. Rev. E
72
,
035201
(R) (
2005
).
18.
J.
Horáček
,
J. G.
Švec
,
J.
Veselý
, and
E.
Vilkman
, “
Experimental study of the vocal fold vibration in excised larynx
,”
Proceedings of Interaction and Feedbacks 2000
, edited by
I.
Zolotarev
(
Institute of Thermomechanics, Academy of Sciences
,
Prague
,
2000
), pp.
27
34
.
19.
J.
Horáček
,
J. G.
Švec
,
J.
Veselý
,
E.
Vilkman
,
I.
Klepáček
, and
A.
Vetešník
, “
Measurement of the vocal-fold vibration behaviour in excised human larynges
,”
Proceedings of 2nd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications
(
University of Firenze, Depts. of Electronics and Physics
,
Firenze, Italy
,
2001
), CD-ROM.
20.
J.
Horáček
,
J. G.
Švec
,
J.
Veselý
, and
E.
Vilkman
, “
Bifurcations in excised larynges caused by vocal fold elongation
,”
Proceedings of the International Conference on Voice Physiology and Biomechanics
, edited by
A.
Giovanni
,
P.
Dejonckere
,
M.
Ouaknine
(
Laboratory of Audio-Phonology
,
Marseille
,
2004
), pp.
87
89
.
21.
J. J.
Jiang
,
Y.
Zhang
,
J.
Stern
, “
Modeling of chaotic vibrations in symmetric vocal folds
,”
J. Acoust. Soc. Am.
110
,
2120
(
2001
).
22.
E.
Vilkman
, “
An apparatus for studying the role of the cricothyroid articulation in the voice production of excised human larynges
,”
Folia Phoniatr.
39
,
169
(
1987
).
23.
J. G.
Švec
and
H. K.
Schutte
, “
Videokymography: High-speed line scanning of vocal fold vibration
,”
J. Voice
10
,
201
(
1996
).
24.
M.
Hirano
,
W.
Vennard
, and
J.
Ohala
, “
Regulation of register, pitch, and intensity of voice
,”
Folia Phoniatr.
22
,
1
(
1970
).
25.
M.
Hirano
and
Y.
Kakita
, “
Cover-body theory of vocal cord vibration
,” in
Speech Science
, edited by
R. G.
Daniloff
(
College Hill Press
,
San Diego
,
1985
), pp.
1
46
.
26.
F.
Takens
, “
Detecting strange attractors in turbulence
,”
Lect. Notes Math.
898
,
366
(
1981
).
27.
T.
Sauer
,
J. A.
York
, and
M.
Casdagli
, “
Embeddology
,”
J. Stat. Phys.
65
,
579
(
1991
).
28.
J. D.
Farmer
and
J. J.
Sidorowich
, “
Predicting chaotic time series
,”
Phys. Rev. Lett.
59
,
845
(
1987
).
29.
J. P.
Crutchfield
and
B. S.
McNamara
, “
Equations of motion from a data series
,”
Complex Syst.
1
,
417
(
1987
).
30.
M.
Casdagli
, “
Nonlinear prediction of chaotic time series
,”
Physica D
35
,
335
(
1989
).
31.
R.
Tokunaga
,
S.
Kajiwara
, and
T.
Matsumoto
, “
Reconstructing bifurcation diagrams only from time waveforms
,”
Physica D
79
,
348
(
1994
).
32.
I.
Tokuda
,
S.
Kajiwara
,
R.
Tokunaga
, and
T.
Matsumoto
, “
Recognizing chaotic time-waveforms in terms of a parametrized family of nonlinear predictors
,”
Physica D
95
,
380
(
1996
).
33.
K.
Judd
and
A. I.
Mees
, “
Modeling chaotic motions of a string from experimental data
,”
Physica D
92
,
221
(
1996
).
34.
M. B.
Kennel
,
R.
Brown
, and
H. D.
I. Abarbanel
, “
Determining embedding dimension for phase-space reconstruction using a geometric construction
,”
Phys. Rev. A
45
,
3403
3411
(
1992
).
35.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
Cambridge
,
1997
).
36.
I.
Shimada
and
T.
Nagashima
, “
A numerical approach to ergodic problem of dissipative dynamical systems
,”
Prog. Theor. Phys.
61
,
1605
(
1979
).
37.
K.
Ishizaka
and
J. L.
Flanagan
, “
Synthesis of voiced sounds from a two-mass model of the vocal cords
,”
Bell Syst. Tech. J.
51
,
1233
(
1972
).
38.
X.
Pelorson
,
A.
Hirschberg
,
R. R.
van Hassel
,
A. P. J.
Wijnands
, and
Y.
Auregan
, “
Theoretical and experimental study of quasi-steady flow separation within the glottis during phonation
,”
J. Acoust. Soc. Am.
96
,
3416
(
1994
).
39.
B. H.
Story
and
I. R.
Titze
, “
Voice simulation with a body-cover model of the vocal folds
,”
J. Acoust. Soc. Am.
97
,
1249
(
1995
).
40.
J.
Horáček
,
P.
Šidlof
, and
J. G.
Švec
, “
Numerical simulation of self-oscillations of human vocal folds with Hertz model of impact forces
,”
J. Fluids Struct.
20
,
853
(
2005
).
41.
F.
Alipour
,
D. A.
Berry
, and
I. R.
Titze
, “
A finite-element model of vocal-fold vibration
,”
J. Acoust. Soc. Am.
108
,
3003
(
2000
).
42.
I. T.
Tokuda
,
J.
Horáček
,
J. G.
Švec
, and
H.
Herzel
, “
Comparison of biomechanical modeling of register transitions and voice instabilities with excised larynx experiments
,”
J. Acoust. Soc. Am.
122
,
519
(
2007
).
43.
J. G.
Švec
,
F.
Šram
, and
H. K.
Schutte
, “
Videokymography in voice disorders: What to look for?
Ann. Otol. Rhinol. Laryngol.
116
,
172
(
2007
).
44.
J.
Neubauer
,
P.
Mergell
,
U.
Eysholdt
, and
H.
Herzel
, “
Spatio-temporal analysis of irregular vocal fold oscillations: Biphonation due to desynchronization of spatial modes
,”
J. Acoust. Soc. Am.
110
,
3179
(
2001
).
45.
H.
Hatzikirou
,
W. T.
Fitch
, and
H.
Herzel
, “
Voice instabilities due to source-tract interactions
,”
Acta Acust.
92
,
468
(
2006
).
46.
S.
Kiritani
,
H.
Hirose
, and
H.
Imagawa
, “
High-speed digital imaging analysis of vocal fold vibration in diplophonia
,”
Speech Commun.
13
,
23
(
1993
).
47.
T.
Wittenberg
,
M.
Tigges
,
P.
Mergell
, and
U.
Eysholdt
, “
Functional imaging of vocal fold vibration: Digital multi-slice high-speed kymography
,”
J. Voice
14
,
422
(
2000
).
You do not currently have access to this content.