This paper analyzes frequency entrainment described by van der Pol and phase-locked loop (PLL) equations. The PLL equation represents the dynamics of a PLL circuit that appear in typical phase-locking phenomena. These two equations describe frequency entrainment by a periodic force. The entrainment originates from two different types of limit cycles: libration for the van der Pol equation and rotation for the PLL one. To explore the relationship between the geometry of limit cycles and the mechanism of entrainment, we investigate the entrainment using an energy balance relation. This relation is equivalent to the energy conservation law of dynamical systems with dissipation and input terms. We show response curves for the dc component, harmonic amplitude, phase difference, and energy supplied by a periodic force. The obtained curves indicate that the entrainments for the two equations have different features of supplied energy, and that the entrainment for the PLL equation possibly has the same mechanism as does the regulation of the phase difference for the van der Pol equation.

1.
M.
Minorsky
,
Introduction to Non-Linear Mechanics
(
Edwards Bros.
,
Ann Arbor, MI
,
1947
).
2.
C.
Hayashi
,
Nonlinear Oscillations in Physical Systems
(
McGraw-Hill
,
New York
,
1964
).
3.
A. A.
Andronov
,
A. A.
Vitt
, and
S. E.
Khaikin
,
Theory of Oscillations
(
Pergamon
,
Oxford
,
1966
).
4.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer-Verlag
,
Berlin
,
1984
); (
Dover
, New York,
2003
).
5.
I.
Blekhman
,
P. S.
Landa
, and
M. G.
Rosenblum
,
Appl. Mech. Rev.
48
,
733
(
1995
).
6.
B.
van der Pol
,
Philos. Mag.
3
,
65
(
1927
).
7.
T.
Endo
and
L. O.
Chua
,
IEEE Trans. Circuits Syst.
35
,
987
(
1988
).
8.
A. J.
Viterbi
,
Principles of Coherent Communication
(
McGraw-Hill
,
New York
,
1966
).
9.
R. E.
Best
,
Phase-Locked Loops: Design, Simulation, and Applications
(
McGraw-Hill
,
New York
,
1999
).
10.
D.
D’humieres
,
M. R.
Beasley
,
B. A.
Huberman
, and
A.
Libchaber
,
Phys. Rev. A
26
,
3483
(
1982
).
11.
T.
Endo
,
W.
Ohno
, and
Y.
Ueda
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
10
,
891
(
2000
).
12.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos
(
Addison-Wesley
,
Reading, MA
,
1994
).
13.
T.
Endo
and
K.
Tada
,
Trans. Inst. Electron. Commun. Eng. Jpn., Part B
J68-B
,
236
(
1985
).
14.
V. N.
Belykh
,
N. F.
Pederson
, and
O. H.
Soerensen
,
Phys. Rev. B
16
,
4860
(
1977
).
15.
N. F.
Pederson
,
O. H.
Soerensen
,
B.
Dueholm
, and
J.
Mygind
,
J. Low Temp. Phys.
38
,
1
(
1980
).
16.
R. L.
Kautz
,
J. Appl. Phys.
52
,
3528
(
1981
).
17.
Y.
Susuki
and
T.
Hikihara
,
IEE Proc.: Circuits Devices Syst.
152
,
159
(
2005
).
18.
H.
Goldstein
,
Classical Mechanics
(
Addison-Wesley
,
Reading, MA
,
1950
).
19.
C. A.
Desoer
and
E. S.
Kuh
,
Basic Circuit Theory
(
McGraw-Hill
,
Kogakusha, Tokyo
,
1969
).
20.
A.
van der Schaft
, L2-gain and Passivity Techniques in Nonlinear Control, 2nd ed. (
Springer-Verlag
,
London
,
2000
).
21.
R.
Adler
,
P. IRE Waves and Electrons
34
,
351
(
1946
).
22.
R.
Abraham
and
A.
Garfinkel
, “
The dynamics of synchronization and phase regulation
,” Preprint, MS#111 (
2003
);
available from http://www. ralph-abraham. org/. This paper cites a technical report on phase regulation [
C.
Hayashi
,”
A physical interpretation of synchronization
,” Preprint, Kyoto (
1982
?)], which includes a detailed explanation of phase regulation for synchronization. Note that the preprint seems not to be published in any archival journal article or technical report.
23.
M. L.
Cartwright
,
J. Inst. Electr. Eng., Part 3
95
,
88
(
1948
).
24.
M.
Kuramitsu
and
F.
Takase
,
Trans. Inst. Electron. Commun. Eng. Jpn., Part A
J66-A
,
336
(
1983
),
M.
Kuramitsu
and
F.
Takase
,
Electron. Commun. Jpn.
66
,
10
(
1983
).
25.
M.
Kuramitsu
,
F.
Takase
, and
H.
Nitta
, in
Proceedings of the IEEE International Symposium on Circuits and Systems
,
Kyoto, Japan
,
1985
, pp.
863
866
.
26.
Y.
Susuki
and
Y.
Ueda
, in
Proceedings of the 2006 International Symposium on Nonlinear Theory and its Applications
,
Bologna, Italy
,
2006
, pp.
647
650
.
27.
J. K.
Hale
,
Ordinary Differential Equations
(
Wiley
,
New York
,
1969
).
28.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer-Verlag
,
New York
,
1983
).
29.

This condition of A12 partly shows a region of stable responses in Fig. 12.1 in Ref. 2 with a0=4γ, r12=Av12a02, and detuning σ1=(1ν2)(μν).

30.

In Fig. 4, the lower side of the response curve for Ap1 is described by considering the absolute value Ap1. The corresponding upper side of the response curve for φv1 is also described by considering the value φp1π. (Ap1,φp1π) is also a solution of the determining equations because the equations have a symmetrical property of (Ap1,φp1).

31.

The resonant frequency is 0.49 under the parameters (16).

32.
R.
Brown
and
L.
Kocarev
,
Chaos
10
,
344
(
2000
).
33.
K.
Ogata
,
System Dynamics
, 4th ed. (
Prentice-Hall
,
Englewood Cliffs, NJ
,
2004
).
You do not currently have access to this content.