A dedicated nonlinear oscillator model able to reproduce the pulse shape, refractory time, and phase sensitivity of the action potential of a natural pacemaker of the heart is developed. The phase space of the oscillator contains a stable node, a hyperbolic saddle, and an unstable focus. The model reproduces several phenomena well known in cardiology, such as certain properties of the sinus rhythm and heart block. In particular, the model reproduces the decrease of heart rate variability with an increase in sympathetic activity. A sinus pause occurs in the model due to a single, well-timed, external pulse just as it occurs in the heart, for example due to a single supraventricular ectopy. Several ways by which the oscillations cease in the system are obtained (models of the asystole). The model simulates properly the way vagal activity modulates the heart rate and reproduces the vagal paradox. Two such oscillators, coupled unidirectionally and asymmetrically, allow us to reproduce the properties of heart rate variability obtained from patients with different kinds of heart block including sino-atrial blocks of different degree and a complete AV block (third degree). Finally, we demonstrate the possibility of introducing into the model a spatial dimension that creates exciting possibilities of simulating in the future the SA the AV nodes and the atrium including their true anatomical structure.

1.
J.
Keener
and
J.
Sneyd
,
Mathematical Physiology
,
Interdisciplinary Applied Mathematics 8
(
Springer
, New York
1998
).
2.
A. L.
Hodgkin
and
A. F.
Huxley
, “
A quantitative description of membrane current and its applications to conduction and excitation in nerve
,”
J. Physiol. (London)
117
,
500
544
(
1952
).
3.
G.
Bub
and
L.
Glass
, “
Bifurcations in a discontinuous circle map: A theory for a chaotic cardiac arrhythmia
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
5
,
359
371
(
1995
).
4.
D.
di Bernardo
,
M. G.
Signorini
, and
S.
Cerutti
, “
A model of two nonlinear coupled oscillators for the study of heartbeat dynamics
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
8
,
1975
1985
(
1998
).
5.
B.
van der Pol
and
J.
van der Mark
, “
The heartbeat considered as a relaxation oscillation and an electrical model of the heart
,”
Philos. Mag.
6
,
763
775
(
1928
).
6.
B. J.
West
,
A. L.
Goldberger
,
G.
Rovner
, and
V.
Bhargava
, “
Nonlinear dynamics of the heartbeat. The AV junction: Passive conduit or active oscillator?
,”
Physica D
17
,
198
206
(
1985
).
7.
J. M. T.
Thompson
and
H. B.
Steward
,
Nonlinear Dynamics and Chaos
(
Wiley
, New York,
2002
).
8.
R.
FitzHugh
, “
Impulses and physiological states in theoretical models of nerve membrane
,”
Biophys. J.
1
,
445
466
(
1961
).
9.
C. R.
Katholi
,
F.
Urthaler
,
J.
Macy
, Jr.
, and
T. N.
James
, “
Mathematical model of automaticity in the sinus node and the AV junction based on weakly coupled relaxation oscillators
,”
Comput. Biomed. Res.
10
,
529
543
(
1977
).
10.
J.
Honerkamp
, “
The heart as a system of coupled nonlinear oscillators
,”
J. Math. Biol.
18
,
69
88
(
1983
).
11.
H.
Zhang
,
A. V.
Holden
,
I.
Kodama
,
H.
Honjo
,
M.
Lei
,
T.
Varghese
, and
M. R.
Boyett
, “
Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node
,”
Am. J. Physiol. Heart Circ. Physiol.
279
,
H397
H421
(
2000
).
12.
K.
Grudziński
and
J. J.
Żebrowski
, “
Modeling cardiac pacemakers with relaxation oscillators
,”
Physica A
336
,
153
152
(
2004
).
13.
Theory of Heart
, edited by
L.
Glass
,
P.
Hunter
, and
A.
McCulloch
(
Springer-Verlag
, Berlin,
1990
).
14.
Cardiac Electrophysiology: From Cell to Bedside
, edited by
P. D.
Zipes
and
J.
Jalife
(
Saunders
, Philadelphia,
2000
).
15.
B. F.
Hoffman
and
P. F.
CraneField
,
Electrophysiology of the Heart
(
McGraw Hill
, New York,
1960
).
16.
A.
Bayés de Luna
,
Clinical Electrocardiography: A Textbook
(
Futura
,
1998
).
17.
O-E.
Brodde
and
M. C.
Michel
, “
Adrenergic and muscarinic receptors in the human heart
,”
Pharmacol. Rev.
51
,
651
689
(
1999
)
18.
D.
Postnov
,
K. H.
Seung
, and
K.
Hyungtae
, “
Synchronization of diffusively coupled oscillators near the homoclinic bifurcation
,”
Phys. Rev. E
60
,
2799
2807
(
1999
).
19.
C.
Morris
and
H.
Lecar
, “
Voltage oscillations in the barnacle giant muscle fiber
,”
Biophys. J.
35
,
193
213
(
1981
).
20.
The Dynamics Solver program, due to J. M. Aguirregabiria (http://tp.lc.ehu.es/jma.html), was used with the fourth-order Runge-Kutta method.
21.
A. V.
Holden
and
V. N.
Biktashev
, “
Computational biology of propagation in excitable media models of cardiac tissue
,”
Chaos, Solitons Fractals
13
,
1643
1658
(
2002
).
22.
S. L.
Cloherty
,
S.
Dokos
, and
N. H.
Lovell
, “
A comparison of 1-D models of cardiac pacemaker heterogeneity
,”
IEEE Trans. Biomed. Eng.
53
,
164
177
(
2006
)
23.
M.
Boyett
,
M. R.
Honjo
, and
H. I.
Kodama
, “
The sinoatrial node, a heterogeneous pacemaker structure
,”
Cardiovasc. Res.
47
,
658
687
(
2000
).
24.
R. W.
Joyner
and
F. J. L.
van Capelle
, “
Propagation through electrically coupled cells: How a small SA node drives a large atrium
,”
Biophys. J.
50
,
1157
1164
(
1986
).
25.
T. J.
Lewis
and
J. P.
Keener
, “
Wave-block in excitable media due to regions of depressed excitability
,”
SIAM J. Appl. Math.
61
,
293
316
(
2000
).
26.
A.
Kulka
,
M.
Bode
, and
H. G.
Purwins
, “
On the influence of inhomogeneities in a reaction-diffusion system
,”
Phys. Lett. A
203
,
33
39
(
1995
).
27.
G. B.
Ermentrout
and
J.
Rinzel
, “
Reflected waves in an inhomogeneous excitable medium
,”
SIAM J. Appl. Math.
56
,
1107
1128
(
1996
).
28.
K.
Grudzinski
,
J. J.
Żebrowski
, and
R.
Baranowski
, “
A model of the sino-atrial and the atrio-ventricular nodes of the conduction system of the human heart
,”
Biomed. Eng. (NY)
51
,
210
214
(
2006
).
29.
G.
Nollo
,
M.
Del Greco
,
F.
Ravelli
, and
M.
Disertori
, “
Evidence of low- and high-frequency oscillations in human AV interval variability: Evaluation with spectral analysis
,”
Am. J. Physiol.
267
(Heart Circ. Physiol. 36),
H1410
H1418
(
1994
).
30.
J.
Jalife
,
V. A.
Slenter
,
J. J.
Salata
, and
D. C.
Michaels
,
Circ. Res.
52
,
642
656
(
1983
).
31.
S. S.
Demir
,
J. W.
Clark
, and
W. R.
Giles
,
Am. J. Physiol. Heart Circ. Physiol.
276
,
H2221
H2244
(
1999
).
32.
T.
Buchner
,
G.
Gielerak
, and
J. J.
Żebrowski
,
Proceedings of the European Study Group for Cardiovascular Oscillations ESGCO
, Jena
2006
, pp.
191
194
.
33.
L.
Glass
, “
Synchronization and rhythmic processes in physiology
,”
Nature (London)
410
,
277
284
(
2001
).
34.
K.
Kotani
,
K.
Takamasu
,
Y.
Ashkenazy
,
H. E.
Stanley
, and
Y.
Yamamoto
, “
A model for cardio-respiratory synchronization in humans
,”
Phys. Rev. E
65
,
051923
(
2002
).
35.
P.
Manneville
and
Y.
Pomeau
,
Phys. Lett.
75A
,
1
(
1979
).
36.
J. J.
Żebrowski
and
R.
Baranowski
, “
Type I intermittency in nonstationary systems—Models and human heart rate variability
,”
Physica A
336
,
74
83
(
2004
).
37.
J. J.
Żebrowski
and
R.
Baranowski
, “
Observations and modeling of deterministic properties of human heart rate variability
,”
Pramana
64
,
543
562
(
2005
).
38.
H.
Hirsch
,
B. A.
Huberman
, and
D. J.
Scalapino
, “
Theory of intermittency
,”
Phys. Rev. A
25
,
519
532
(
1982
).
39.
J. M.
Gac
and
J. J.
Żebrowski
, “
Nonstationary Pomeau-Manneville intermittency in systems with a periodic parameter change
,”
Phys. Rev. E
73
,
066203
(
2006
).
40.
P.
Kuklik
,
L.
Szumowski
,
J. J.
Żebrowski
, and
F.
Walczak
,
Physiol. Meas
25
,
617
627
(
2004
).
You do not currently have access to this content.