Magnetic resonance imaging (MRI) provides a powerful tool for the investigation of chemical structures in optically opaque porous media, in which chemical concentration gradients can be visualized, and diffusion and flow properties are simultaneously determined. In this paper we give an overview of the MRI technique and review theory and experiments on the formation of chemical waves in a tubular packed bed reactor upon the addition of a nonlinear chemical reaction. MR images are presented of reaction-diffusion waves propagating in the three-dimensional (3D) network of channels in the reactor, and the 3D structure of stationary concentration patterns formed via the flow-distributed oscillation mechanism is demonstrated to reflect the local hydrodynamics in the packed bed. Possible future directions regarding the influence of heterogeneities on transport and reaction are discussed.

1.
K.
Vafai
,
Handbook of Porous Media
(
Marcel Dekker
,
New York
,
2000
).
2.
F. J.
Keil
, “
Diffusion and reaction in porous networks
,”
Catal. Today
53
,
245
(
1999
).
3.
J.
Islam
,
N.
Singhal
, and
M.
O’Sullivan
, “
Modeling biogeochemical processes in leachate-contaminated soils: A review
,”
Transp. Porous Media
43
,
407
(
2001
).
4.
A. I.
Liapis
and
B. A.
Grimes
, “
The coupling of the electrostatic potential with the transport and adsorption mechanisms in ion-exchange chromatography systems: Theory and experiments
,”
Sep. Sci. Technol.
28
,
1909
(
2005
).
5.
I. R.
Epstein
, “
The consequences of imperfect mixing in autocatalytic chemical and biological systems
,”
Nature (London)
374
,
321
(
1995
).
6.
Z.
Neufeld
, “
Excitable media in a chaotic flow
,”
Phys. Rev. Lett.
87
,
108301
(
2001
).
7.
C. R. Q.
Nugent
,
W. M.
Quarles
, and
W. M.
Soloman
, “
Experimental studies of pattern formation in a reaction-advection-diffusion system
,”
Phys. Rev. Lett.
93
,
218301
(
2004
);
V.
Balakotaiah
,
S. M. S.
Dommeti
, and
N.
Gupta
, “
Bifurcation analysis of chemical reactors and reacting flows
,”
Chaos
9
,
13
(
1999
).
8.
A.
Taylor
, “
Chemical patterns in simple flow systems
,”
Adv. Complex Syst.
6
,
155
(
2003
).
9.
F. H.
Fenton
,
E. M.
Cherry
,
H. M.
Hastings
, and
S. J.
Evans
, “
Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity
,”
Chaos
12
,
852
(
2002
).
10.
A. B.
Rovinsky
and
M.
Menzinger
, “
Chemical-instability induced by a differential flow
,”
Phys. Rev. Lett.
69
,
1193
(
1992
).
11.
S. P.
Kuznetsov
,
E.
Mosekilde
,
G.
Dewel
, and
P.
Borckmans
, “
Absolute and convective instabilities in a one-dimensional Brusselator flow model
,”
J. Chem. Phys.
106
,
7609
(
1997
).
12.
M.
Kaern
,
M.
Menzinger
, and
A.
Hunding
, “
A chemical flow system mimics waves of gene expression during segmentation
,”
Biophys. Chem.
87
,
121
(
2000
).
13.
J. A.
Pojman
and
I. R.
Epstein
, “
Convective effects on chemical waves. 1. Mechanisms and stability-criteria
,”
J. Phys. Chem.
94
,
4966
(
1990
).
14.
A.
De Wit
, “
Fingering of chemical fronts in porous media
,”
Phys. Rev. Lett.
87
,
054502
(
2001
).
15.
P. J.
Barrie
, in
Annual reports on NMR spectroscopy
(
2000
), Vol.
41
, pp.
265
;
Z.
Nagyungvarai
,
J. J.
Tyson
,
S. C.
Muller
,
L. T.
Watson
, and
B.
Hess
, “
Experimental study of spiral waves in the Ce-catalyzed Belousov-Zhabotinskii reaction
,”
J. Phys. Chem.
94
,
8677
(
1990
).
16.
L. F.
Gladden
,
P.
Alexander
,
M. M.
Britton
,
M. D.
Mantle
,
A. J.
Sederman
, and
E. H. L.
Yuen
, “
In situ magnetic resonance measurement of conversion, hydrodynamics and mass transfer during single- and two-phase flow in fixed-bed reactors
,”
Magn. Reson. Imaging
21
,
213
(
2003
).
17.
E. H. L.
Yuen
,
A. J.
Sederman
, and
L. F.
Gladden
, “
In situ magnetic resonance visualisation of the spatial variation of catalytic conversion within a fixed-bed reactor
,”
Appl. Catal., A
232
,
29
(
2002
).
18.
M. M.
Britton
, “
Spatial quantification of Mn2+ and Mn3+ concentrations in the Mn-catalyzed 1, 4-cyclohexanedione/acid/bromate reaction using magnetic resonance Imaging
,”
J. Phys. Chem. A
110
,
2579
(
2006
).
19.
A.
Tzalmona
,
R. L.
Armstrong
,
M.
Menzinger
,
A.
Cross
, and
C.
Lemaire
, “
Measurement of the velocity of chemical waves by magnetic-resonance-imaging
,”
Chem. Phys. Lett.
188
,
457
(
1992
).
20.
Y.
Gao
,
A. R.
Cross
, and
R. L.
Armstrong
, “
Magnetic resonance imaging of ruthenium-, cerium-, and ferroin-catalyzed Belousov-Zhabotinsky reactions
,”
J. Phys. Chem.
100
,
10159
(
1996
).
21.
M. M.
Britton
,
A. J.
Sederman
,
A. F.
Taylor
,
S. K.
Scott
, and
L. F.
Gladden
, “
Magnetic resonance imaging of flow-distributed oscillations
,”
J. Phys. Chem. A
109
,
8306
(
2005
).
22.
L. D.
Schmidt
,
The Engineering of Chemical Reactions
(
Oxford University Press
,
New York
,
1998
).
23.
J.
Delgado
, “
A critical review of dispersion in packed beds
,”
Heat Mass Transfer
42
,
279
(
2006
).
24.
A. M.
Berezhkovskii
,
V. Y.
Zitserman
, and
S. Y.
Shvartsman
, “
Effective diffusivity in periodic porous materials
,”
J. Chem. Phys.
119
,
6991
(
2003
).
25.
A. J.
Sederman
and
L. F.
Gladden
, “
MRI as a probe of the deposition of solid fines in a porous medium
,”
Magn. Reson. Imaging
19
,
565
(
2001
);
A. J.
Sederman
,
M. L.
Johns
,
P.
Alexander
, and
L. F.
Gladden
, “
Structure-flow correlations in packed beds
,”
Chem. Eng. Sci.
53
,
2117
(
1998
).
26.
J. J.
Tyson
, “
Scaling and reducing the Field-Korös-Noyes mechanism of the Belousov-Zhabotinskii reaction
,”
J. Phys. Chem.
86
,
3006
(
1982
).
27.
A. F.
Taylor
, “
Mechanism and phenomenology of an oscillating chemical reaction
,”
Prog. React. Kinet.
27
,
247
(
2002
).
28.
M. D.
Eager
,
M.
Santos
,
M.
Dolnik
,
A. M.
Zhabotinsky
,
K.
Kustin
, and
I. R.
Epstein
, “
Dependence of wave speed on acidity and initial bromate concentration in the Belousov-Zhabotinsky reaction-diffusion system
,”
J. Phys. Chem.
98
,
10750
(
1994
);
M. T. M.
Koper
and
A.
Schuijff
, “
Quantitative theoretical-study of the speed of propagation of chemical waves in the Belousov-Zhabotinskii reaction
,”
J. Phys. Chem.
94
,
8135
(
1990
).
29.
P. K.
Brazhnik
and
J. J.
Tyson
, “
Velocity-curvature dependence for chemical waves in the Belousov-Zhabotinsky reaction: Theoretical explanation of experimental observations
,”
Phys. Rev. E
59
,
3920
(
1999
).
30.
G.
Bub
and
A.
Shrier
, “
Propagation through heterogeneous substrates in simple excitable media models
,”
Chaos
12
,
747
(
2002
).
31.
K.
ten Tusscher
and
A. V.
Panfilov
, “
Influence of nonexcitable cells on spiral breakup in two-dimensional and three-dimensional excitable media
,”
Phys. Rev. E
68
,
062902
(
2003
).
32.
A. B.
Rovinsky
and
M.
Menzinger
, “
Self-organization induced by the differential flow of activator and inhibitor
,”
Phys. Rev. Lett.
70
,
778
(
1993
).
33.
R.
Toth
,
A.
Papp
,
V.
Gaspar
,
J. H.
Merkin
,
S. K.
Scott
, and
A. F.
Taylor
, “
Flow-driven instabilities in the Belousov-Zhabotinsky reaction: Modelling and experiments
,”
Phys. Chem. Chem. Phys.
3
,
957
(
2001
).
34.
P.
Andresen
,
M.
Bache
, and
E.
Mosekilde
, “
Stationary space-periodic structures with equal diffusion coefficients
,”
Phys. Rev. E
60
,
297
(
1999
).
35.
M.
Kaern
and
M.
Menzinger
, “
Flow-distributed oscillations: Stationary chemical waves in a reacting flow
,”
Phys. Rev. E
60
,
R3471
(
1999
).
36.
J. R.
Bamforth
,
R.
Toth
,
V.
Gaspar
, and
S. K.
Scott
, “
Scaling and dynamics of “flow distributed oscillation patterns" in the Belousov-Zhabotinsky reaction
,”
Phys. Chem. Chem. Phys.
4
,
1299
(
2002
);
M.
Kaern
and
M.
Menzinger
, “
Experiments on flow-distributed oscillations in the Belousov—Zhabotinsky reaction
,”
J. Phys. Chem. A
106
,
4897
(
2002
).
37.
P. T.
Callaghan
,
Principles of Nuclear Magnetic Resonance Microscopy
(
Oxford University Press
,
Oxford
,
1991
).
38.
I. V.
Koptyug
and
R. Z.
Sagdeev
, “
Modern applications of NMR tomography in physical chemistry. The characteristic features of the technique and its applications to studies of liquid-containing objects
,”
Russ. Chem. Rev.
71
,
593
(
2002
).
39.
R. B.
Lauffer
, “
Paramagnetic metal-complexes as water proton relaxation agents for NMR imaging—Theory and design
,”
Chem. Rev. (Washington, D.C.)
87
,
901
(
1987
).
40.
R. M.
Henkelman
,
E. R.
McVeigh
,
A. P.
Crawley
, and
W.
Kucharczyk
, “
Very slow in-plane flow with gradient echo imaging
,”
Magn. Reson. Imaging
7
,
383
(
1989
).
41.
J.
Hennig
,
A.
Nauerth
, and
H.
Friedburg
, “
Rare imaging—a fast imaging method for clinical MR
,”
Magn. Reson. Med.
3
,
823
(
1986
).
42.
M. M.
Britton
, “
Nuclear magnetic resonance studies of the 1, 4-cyclohexanedione-bromate-acid oscillatory system
,”
J. Phys. Chem. A
107
,
5033
(
2003
).
43.
R.
Evans
,
C. R.
Timmel
,
P. J.
Hore
, and
M. M.
Britton
, “
Magnetic resonance imaging of a magnetic field-dependent chemical wave
,”
Chem. Phys. Lett.
397
,
67
(
2004
).
44.
M. M.
Britton
(unpublished results).
45.
E. O.
Stejskal
and
J. E.
Tanner
, “
Spin diffusion measurements—Spin echoes in the presence of a time-dependent field gradient
,”
J. Chem. Phys.
42
,
288
(
1965
).
46.
M. M.
Britton
, “
Nuclear magnetic resonance studies of convection in the 1, 4-cyclohexanedione-bromate-acid reaction
,”
J. Phys. Chem. A
110
,
5075
(
2006
).
47.
I. V.
Koptyug
,
A. A.
Lysova
,
V. N.
Parmon
, and
R. Z.
Sagdeev
, “
In situ H-1 NMR imaging study of propagation of concentration waves in an autocatalytic reaction in a fixed granular bed
,”
Kinet. Catal.
44
,
401
(
2003
).
48.
R. F.
Benenati
and
C. B.
Brosilow
, “
Void fraction distribution in beds of spheres
,”
AIChE J.
8
,
359
(
1962
).
49.
M. M.
Bar
,
E.
Meron
, and
E.
Utzny
, “
Pattern formation on anisotropic and heterogeneous catalytic surfaces
,”
Chaos
12
,
204
(
2002
).
50.
G.
Carta
,
A. R.
Ubiera
, and
T. M.
Pabst
, “
Protein mass transfer kinetics in ion exchange media: Measurements and interpretations
,”
Chem. Eng. Technol.
28
,
1252
(
2005
).
51.
A. F.
Taylor
,
J. R.
Bamforth
, and
P.
Bardsley
, “
Complex pattern development in a plug-flow tubular reactor
,”
Phys. Chem. Chem. Phys.
4
,
5640
(
2002
).
You do not currently have access to this content.