We study the existence of strange nonchaotic attractors (SNA) in the family of Harper maps. We prove that for a set of parameters of positive measure, the map possesses a SNA. However, the set is nowhere dense. By changing the parameter arbitrarily small amounts, the attractor is a smooth curve and not a SNA.

1.
D.
Ruelle
and
F.
Takens
,
Commun. Math. Phys.
20
,
167
(
1971
).
2.
J.-P.
Eckmann
and
D.
Ruelle
,
Rev. Mod. Phys.
57
,
617
(
1985
).
3.
C.
Grebogi
,
E.
Ott
,
S.
Pelikan
, and
J. A.
Yorke
,
Physica D
13
,
261
(
1984
).
4.
A.
Prasad
,
S. S.
Negi
, and
R.
Ramaswamy
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
11
,
291
(
2001
).
5.
G.
Keller
,
Fund. Math.
151
,
139
(
1996
).
6.
P.
Glendinning
,
Dyn. Syst.
17
,
287
(
2002
).
7.
J.
Stark
,
Dyn. Syst.
18
,
351
(
2003
).
8.
T.
Jäger
,
Ergod. Theory Dyn. Syst.
. (to be published).
9.
K.
Bjerklov
,
Ergod. Theory Dyn. Syst.
25
,
1015
(
2005
).
10.
J. A.
Ketoja
and
I. I.
Satija
,
Physica D
109
,
70
(
1997
).
11.
J. A.
Ketoja
and
I. I.
Satija
,
Phys. Rev. Lett.
75
,
2762
(
1995
).
12.
S. S.
Singh
and
R.
Ramaswany
,
Phys. Rev. Lett.
83
,
4530
(
1999
).
13.
S. S.
Singh
and
R.
Ramaswany
,
Phys. Rev. E
64
,
045204
(
2001
).
14.
B. D.
Mestel
,
A. H.
Osbaldestin
, and
B.
Winn
,
J. Math. Phys.
41
,
8304
(
2000
).
15.
A.
Bondeson
,
E.
Ott
, and
T. M.
Antonsen
, Jr.
,
Phys. Rev. Lett.
55
,
2103
(
1985
).
16.
M. D.
Choi
,
G. A.
Elliott
, and
N.
Yui
,
Invent. Math.
99
,
225
(
1990
).
17.
J.
Puig
,
Commun. Math. Phys.
244
,
297
(
2004
).
18.
A.
Avila
and
S.
Jitomirskaya
,
Ann. Math.
(to be published).
19.
A.
Haro
and
R.
de la Llave
(preprint,
2005
).
20.
A.
Haro
and
R.
de la Llave
,
Chaos
16
,
013120
(
2006
).
21.
B. D.
Mestel
and
A. H.
Osbaldestin
,
J. Math. Phys.
45
,
5042
(
2004
).
22.
B. D.
Mestel
and
A. H.
Osbaldestin
,
J. Phys. A
37
,
9071
(
2004
).
23.
P.
Harper
,
Proc. Phys. Soc. London
A68
,
874
(
1955
).
24.
25.
K. v.
Klitzing
,
G.
Dorda
, and
M.
Pepper
,
Phys. Rev. Lett.
45
,
494
(
1980
).
26.
V. I.
Oseledec
,
Trudy Moskov. Mat. Obšč.
19
,
179
(
1968
).
27.
J. F. C.
Kingman
,
J. R. Stat. Soc. Ser. B (Methodol.)
30
,
499
(
1968
).
28.
R. J.
Sacker
and
G. R.
Sell
,
J. Differ. Equations
27
,
320
(
1978
).
29.
J. F.
Selgrade
,
Trans. Am. Math. Soc.
203
,
359
(
1975
).
30.
R.
Johnson
and
G.
Sell
,
J. Differ. Equations
41
,
262
(
1981
).
31.
R.
Johnson
,
J. Differ. Equations
35
,
366
(
1980
).
32.
M.
Hirsch
,
C.
Pugh
, and
M.
Shub
,
Invariant Manifolds
,
Lecture Notes in Mathematics
(
Springer-Verlag
,
Berlin
,
1977
), Vol.
583
.
33.
A.
Haro
and
R.
de la Llave
(preprint,
2003
).
34.
S.
Datta
,
T.
Jäger
,
G.
Keller
, and
R.
Ramaswamy
,
Nonlinearity
17
,
2315
(
2004
).
35.
R.
Mañé
,
Trans. Am. Math. Soc.
246
,
261
(
1978
).
36.
R.
Johnson
,
J. Differ. Equations
46
,
165
(
1982
).
37.
M.
Herman
,
Comment. Math. Helv.
58
,
453
(
1983
).
38.
J.
Bourgain
and
S.
Jitomirskaya
,
J. Stat. Phys.
108
,
1203
(
2002
).
39.
S. Y.
Jitomirskaya
and
I. V.
Krasovsky
,
Math. Res. Lett.
9
,
413
(
2002
).
40.
J.
Puig
and
C.
Simó
,
Ergod. Theory Dyn. Syst.
26
,
481
(
2006
).
41.
B.
Hunt
, and
E.
Ott
,
Phys. Rev. Lett.
87
,
254101
(
2001
).
42.
R.
Johnson
and
J.
Moser
,
Commun. Math. Phys.
84
,
403
(
1982
).
43.
R.
Johnson
,
Ill. J. Math.
28
,
397
(
1984
).
44.
E.
Coddington
and
N.
Levinson
,
Theory of Ordinary Differential Equations
(
McGraw-Hill
,
New York
,
1955
).
45.
S.
Jitomirskaya
and
B.
Simon
,
Commun. Math. Phys.
165
,
201
(
1994
).
47.
E.
Sorets
and
T.
Spencer
,
Commun. Math. Phys.
142
,
543
(
1991
).
48.
J.
Bourgain
,
Green’s Function Estimates for Lattice Schrödinger Operators and Applications
,
Annals of Mathematics Studies
(
Princeton University Press
,
Princeton
,
2005
).
You do not currently have access to this content.