The Liouville and first Bogoliubov hierarchy equations with derivatives of noninteger order are derived. The fractional Liouville equation is obtained from the conservation of probability to find a system in a fractional volume element. This equation is used to obtain Bogoliubov hierarchy and fractional kinetic equations with fractional derivatives. Statistical mechanics of fractional generalization of the Hamiltonian systems is discussed. Liouville and Bogoliubov equations with fractional coordinate and momenta derivatives are considered as a basis to derive fractional kinetic equations. The Fokker-Planck-Zaslavsky equation that has fractional phase-space derivatives is obtained from the fractional Bogoliubov equation. The linear fractional kinetic equation for distribution of the charged particles is considered.

1.
I.
Podlubny
,
Fractional Differential Equations
(
Academic
,
New York
,
1999
).
2.
A. A.
Kilbas
,
H. M.
Srivastava
, and
J. J.
Trujillo
,
Theory and Applications of Fractional Differential Equations
(
Elsevier
,
New York
,
2006
).
3.
S. G.
Samko
,
A. A.
Kilbas
, and
O. I.
Marichev
,
Fractional Integrals and Derivatives Theory and Applications
(
Gordon and Breach
,
New York
,
1993
).
4.
K. B.
Oldham
and
J.
Spanier
,
The Fractional Calculus
(
Academic
,
New York
,
1974
).
5.
G. M.
Zaslavsky
, “
Chaos, fractional kinetics, and anomalous transport
Phys. Rep.
371
,
461
580
(
2002
).
6.
G. M.
Zaslavsky
,
Hamiltonian Chaos and Fractional Dynamics
(
Oxford University Press
,
Oxford
,
2005
).
7.
A.
Carpinteri
and
F.
Mainardi
,
Fractals and Fractional Calculus in Continuum Mechanics
(
Springer
,
New York
,
1997
).
8.
V. E.
Tarasov
, “
Continuous medium model for fractal media
,”
Phys. Lett. A
336
,
167
174
(
2005
);
V. E.
Tarasov
,“
Fractional hydrodynamic equations for fractal media
,”
Ann. Phys.
318
,
286
307
(
2005
);
V. E.
Tarasov
,“
Possible experimental test of continuous medium model for fractal media
,”
Phys. Lett. A
341
,
467
472
(
2005
).
9.
V. E.
Tarasov
, “
Fractional Fokker-Planck equation for fractal media
,”
Chaos
15
,
023102
(
2005
).
10.
N.
Laskin
, “
Fractals and quantum mechanics
,”
Chaos
10
,
780
790
(
2000
);
N.
Laskin
,“
Fractional quantum mechanics
,”
Phys. Rev. E
62
,
3135
3145
(
2000
);
N.
Laskin
,“
Fractional quantum mechanics and Levy path integrals
,”
Phys. Lett. A
268
,
298
305
(
2000
);
N.
Laskin
,“
Fractional Schrödinger equation
,”
Phys. Rev. E
66
,
056108
(
2002
).
11.
M.
Naber
, “
Time fractional Schrödinger equation
,”
J. Math. Phys.
45
,
3339
3352
(
2004
).
12.
G. M.
Zaslavsky
, “
Fractional kinetic equation for Hamiltonian chaos
,”
Physica D
76
,
110
122
(
1994
).
13.
A. I.
Saichev
and
G. M.
Zaslavsky
, “
Fractional kinetic equations: Solutions and applications
,”
Chaos
7
,
753
764
(
1997
).
14.
G. M.
Zaslavsky
and
M. A.
Edelman
, “
Fractional kinetics: From pseudochaotic dynamics to Maxwell’s demon
,”
Physica D
193
,
128
147
(
2004
).
15.
R. R.
Nigmatullin
, “
Fractional kinetic equations and universal decoupling of a memory function in mesoscale region
,”
Physica A
363
,
282
298
(
2006
);
A. V.
Chechkin
,
V. Yu.
Gonchar
, and
M.
Szydlowsky
, “
Fractional kinetics for relaxation and superdiffusion in magnetic field
,”
Phys. Plasmas
9
,
78
88
(
2002
);
R. K.
Saxena
,
A. M.
Mathai
, and
H. J.
Haubold
, “
On fractional kinetic equations
,”
Astrophys. Space Sci.
282
,
281
287
(
2002
).
16.
B. A.
Carreras
,
V. E.
Lynch
, and
G. M.
Zaslavsky
, “
Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model
,”
Phys. Plasmas
8
,
5096
5103
(
2001
).
17.
V. E.
Tarasov
, “
Electromagnetic field of fractal distribution of charged particles
,”
Phys. Plasmas
12
,
082106
(
2005
);
V. E.
Tarasov
,“
Multipole moments of fractal distribution of charges
,”
Mod. Phys. Lett. B
19
,
1107
1118
(
2005
);
V. E.
Tarasov
,“
Magnetohydrodynamics of fractal media
,”
Phys. Plasmas
13
,
052107
(
2006
).
18.
F.
Mainardi
and
R.
Gorenflo
, “
On Mittag-Leffler-type functions in fractional evolution processes
,”
J. Comput. Appl. Math.
118
,
283
299
(
2000
).
19.
F.
Mainardi
, “
Fractional relaxation-oscillation and fractional diffusion-wave phenomena
,”
Chaos, Solitons Fractals
7
,
1461
1477
(
1996
).
20.
V. E.
Tarasov
, “
Fractional generalization of Liouville equation
,”
Chaos
14
,
123
127
(
2004
);
V. E.
Tarasov
,“
Fractional systems and fractional Bogoliubov hierarchy equations
,”
Phys. Rev. E
71
,
011102
(
2005
);
V. E.
Tarasov
,“
Fractional Liouville and BBGKI equations
,”
J. Phys.: Conf. Ser.
7
,
17
33
(
2005
);
V. E.
Tarasov
,“
Transport equations from Liouville equations for fractional systems
,”
Int. J. Mod. Phys. B
20
,
341
354
(
2006
).
21.
V. E.
Tarasov
, “
Fractional generalization of gradient and Hamiltonian systems
,”
J. Phys. A
38
,
5929
5943
(
2005
);
V. E.
Tarasov
,“
Fractional generalization of gradient systems
,”
Lett. Math. Phys.
73
,
49
58
(
2005
);
V. E.
Tarasov
,“
Fractional variations for dynamical systems: Hamilton and Lagrange approaches
,”
J. Phys. A
39
,
8409
8425
(
2006
).
22.
N.
Laskin
and
G. M.
Zaslavsky
, “
Nonlinear fractional dynamics on a lattice with long-range interactions
,”
Physica A
368
,
38
54
(
2006
).
23.
V. E.
Tarasov
and
G. M.
Zaslavsky
, “
Fractional dynamics of coupled oscillators with long-range interaction
,”
Chaos
16
,
023110
(
2006
);
V. E.
Tarasov
and
G. M.
Zaslavsky
,“
Fractional dynamics of systems with long-range interaction
,”
Commun. Nonlinear Sci. Numer. Simul.
11
,
885
898
(
2006
).
24.
N.
Korabel
,
G. M.
Zaslavsky
, and
V. E.
Tarasov
, “
Coupled oscillators with power-law interaction and their fractional dynamics analogues
,”
Commun. Nonlinear Sci. Numer. Simul.
(to be published).
25.
V. E.
Tarasov
and
G. M.
Zaslavsky
, “
Dynamics with low-level fractionality
,”
Physica A
368
,
399
415
(
2006
).
26.
E. W.
Montroll
and
M. F.
Shlesinger
, “
The wonderful world of random walks
,” in
Studies in Statistical Mechanics
, edited by
J.
Lebowitz
and
E.
Montroll
(
North-Holland
,
Amsterdam
,
1984
), Vol.
11
, pp.
1
121
.
27.
V. V.
Uchaikin
, “
Self-similar anomalous diffusion and Levy-stable laws
,”
Phys. Usp.
46
,
821
849
(
2003
);
V. V.
Uchaikin
,“
Anomalous diffusion and fractional stable distributions
,”
J. Exp. Theor. Phys.
97
,
810
825
(
2003
).
28.
K.
Cottrill-Shepherd
and
M.
Naber
, “
Fractional differential forms
,”
J. Math. Phys.
42
,
2203
2212
(
2001
).
29.
M.
Caputo
, “
Linear models of dissipation whose Q is almost frequency independent
,”
Geophys. J. R. Astron. Soc.
13
,
529
539
(
1967
).
30.
N. N.
Bogoliubov
, “
Kinetic equations
,”
Zh. Eksp. Teor. Fiz.
16
,
691
702
(
1946
);
N. N.
Bogoliubov
,
J. Phys. (USSR)
10
,
265
(
1946
).
31.
K. P.
Gurov
,
Foundation of Kinetic Theory. Method of N. N. Bogoliubov
(
Nauka
,
Moscow
,
1966
), in Russian.
32.
D. Ya.
Petrina
,
V. I.
Gerasimenko
, and
P. V.
Malishev
,
Mathematical Foundation of Classical Statistical Mechanics
(
Naukova Dumka
,
Kiev
,
1985
), in Russian.
33.
G. A.
Martynov
,
Classical Statistical Mechanics
(
Kluwer
,
Dordrecht
,
1997
).
34.
A. A.
Vlasov
,
Many-particle Theory and its Application to Plasma
(
Gordon and Breach
,
New York
,
1961
).
35.
A. A.
Vlasov
, “
Vibrating properties of electronic gas
,”
Zh. Eksp. Teor. Fiz.
8
,
291
(
1938
);
A. A.
Vlasov
,“
On the kinetic theory of an assembly of particles with collective interaction
,”
J. Phys. (USSR)
9
,
25
(
1945
).
36.
D. N.
Zubarev
and
M. Yu.
Novikov
, “
Generalized formulation of the boundary condition for the Liouville equation and for BBGKY hierarchy
,”
Teor. Mat. Fiz.
13
,
406
420
(
1972
).
37.
G.
Ecker
,
Theory of Fully Ionized Plasmas
(
Academic
,
New York
,
1972
).
38.
N. A.
Krall
and
A. W.
Trivelpiece
,
Principles of Plasma Physics
(
McGraw-Hill
,
New York
,
1973
).
39.
V. E.
Tarasov
, “
Stationary solution of Liouville equation for non-Hamiltonian systems
,”
Ann. Phys.
316
,
393
413
(
2005
);
V. E.
Tarasov
,“
Classical canonical distribution for dissipative systems
,”
Mod. Phys. Lett. B
17
,
1219
1226
(
2003
).
40.
A.
Isihara
,
Statistical Physics
(
Academic
,
New York
,
1971
), Appendix IV, Sec. 7.5.
41.
P.
Resibois
and
M.
De Leener
,
Classical Kinetic Theory of Fluids
(
Wiley
,
New York
,
1977
), Sec. IX.4.
42.
D.
Forster
,
Hydrodynamics Fluctuations, Broken Symmetry, and Correlation Functions
(
Benjamin
,
London
,
1975
), Sec. 6.4.
43.
V.
Feller
,
An Introduction to Probability Theory and its Applications
(
Wiley
,
New York
,
1971
), Vol.
2
.
You do not currently have access to this content.