Circadian rhythms, characterized by a period of about 24h, are the most widespread biological rhythms generated autonomously at the molecular level. The core molecular mechanism responsible for circadian oscillations relies on the negative regulation exerted by a protein on the expression of its own gene. Deterministic models account for the occurrence of autonomous circadian oscillations, for their entrainment by light-dark cycles, and for their phase shifting by light pulses. Stochastic versions of these models take into consideration the molecular fluctuations that arise when the number of molecules involved in the regulatory mechanism is low. Numerical simulations of the stochastic models show that robust circadian oscillations can already occur with a limited number of mRNA and protein molecules, in the range of a few tens and hundreds, respectively. Various factors affect the robustness of circadian oscillations with respect to molecular noise. Besides an increase in the number of molecules, entrainment by light-dark cycles, and cooperativity in repression enhance robustness, whereas the proximity of a bifurcation point leads to less robust oscillations. Another parameter that appears to be crucial for the coherence of circadian rhythms is the binding/unbinding rate of the inhibitory protein to the promoter of the clock gene. Intercellular coupling further increases the robustness of circadian oscillations.

1.
M. C.
Moore-Ede
,
F. M.
Sulzman
, and
C. A.
Fuller
,
The Clocks That Time Us. Physiology of the Circadian Timing System
(
Harvard University Press
,
Cambridge
,
1982
).
2.
L. N.
Edmunds
 Jr.
,
Cellular and Molecular Bases of Biological Clocks. Models and Mechanisms for Circadian Timekeeping
(
Springer
,
New York
,
1988
).
3.
J. C.
Dunlap
, “
Molecular bases for circadian clocks
,”
Cell
96
,
271
(
1999
).
4.
M. W.
Young
and
S. A.
Kay
, “
Time zones: A comparative genetics of circadian clocks
,”
Nat. Rev. Genet.
2
,
702
(
2001
).
5.
A.
Goldbeter
, “
A model for circadian oscillations in the Drosophila period protein (PER)
,”
Proc. R. Soc. London, Ser. B
261
,
319
(
1995
).
6.
J.-C.
Leloup
and
A.
Goldbeter
, “
A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins
,”
J. Biol. Rhythms
13
,
70
(
1998
).
7.
J. C.
Leloup
,
D.
Gonze
, and
A.
Goldbeter
, “
Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora
,”
J. Biol. Rhythms
14
,
433
(
1999
).
8.
N.
Barkai
and
S.
Leibler
, “
Circadian clocks limited by noise
,”
Nature (London)
403
,
267
(
2000
).
9.
D.
Gonze
,
J.
Halloy
, and
A.
Goldbeter
, “
Robustness of circadian rhythms with respect to molecular noise
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
673
(
2002
).
10.
H. R.
Ueda
,
M.
Hagiwara
, and
H.
Kitano
, “
Robust oscillations within the interlocked feedback model of Drosophila circadian rhythm
,”
J. Theor. Biol.
210
,
401
(
2001
).
11.
P.
Smolen
,
D. A.
Baxter
, and
J. H.
Byrne
, “
Modeling circadian oscillations with interlocking positive and negative feedback loops
,”
J. Neurosci.
21
,
6644
(
2001
).
12.
P.
Ruoff
and
L.
Rensing
, “
The temperature-compensated Goodwin model simulates many circadian clock properties
,”
J. Theor. Biol.
179
,
275
(
1996
).
13.
S.
Becker-Weimann
,
J.
Wolf
,
H.
Herzel
, and
A.
Kramer
, “
Modeling feedback loops of the mammalian circadian oscillator
,”
Biophys. J.
87
,
3023
(
2004
).
14.
J.-C.
Leloup
and
A.
Goldbeter
, “
Toward a detailed computational model for the mammalian circadian clock
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
7051
(
2003
).
15.
D. B.
Forger
and
C. S.
Peskin
, “
A detailed predictive model of the mammalian circadian clock
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
14806
(
2003
).
16.
D.
Gonze
,
J.
Halloy
, and
A.
Goldbeter
, “
Deterministic versus stochastic models for circadian rhythms
,”
J. Biol. Phys.
28
,
637
(
2002
).
17.
D.
Gonze
,
J.
Halloy
, and
A.
Goldbeter
, “
Emergence of coherent oscillations in stochastic models for circadian rhythms
,”
Physica A
342
,
221
(
2004
).
18.
G.
Nicolis
and
I.
Prigogine
,
Self-Organization in Nonequilibrium Systems
(
Wiley
,
New York
,
1977
).
19.
D. T.
Gillespie
, “
Exact stochastic simulation of coupled chemical reactions
,”
J. Phys. Chem.
81
,
2340
(
1977
).
20.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
, (
North-Holland
,
Amsterdam
,
1981
).
21.
G.
Nicolis
and
P.
Gaspard
, “
Toward a probabilistic approach to complex systems
,”
Chaos, Solitons and Fractals
4
,
41
(
1994
).
22.
D.
Gonze
,
J.
Halloy
, and
P.
Gaspard
, “
Biochemical clocks and molecular noise: theoretical study of robustness factors
,”
J. Chem. Phys.
116
,
10997
(
2002
).
23.
D.
Gonze
and
A.
Goldbeter
, “
Entrainment versus chaos in a model for a circadian oscillator driven by light-dark cycles
,”
J. Stat. Phys.
101
,
649
(
2000
).
24.
D. B.
Forger
and
C. S.
Peskin
, “
Stochastic simulation of the mammalian circadian clock
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
321
(
2005
).
25.
H.
Kunz
and
P.
Achermann
, “
Simulation of circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators
,”
J. Theor. Biol.
224
,
63
(
2003
).
26.
M.
Rosbash
, “
Molecular control of circadian rhythms
,”
Curr. Opin. Genet. Dev.
5
,
662
(
1995
).
27.
S. K.
Crosthwaite
,
J. J.
Loros
, and
J. C.
Dunlap
, “
Light induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript
,”
Cell
81
,
1003
(
1995
).
28.
M.
Ishiura
,
S.
Kutsuna
,
S.
Aoki
,
H.
Iwasaki
,
C. R.
Andersson
,
A.
Tanabe
,
S. S.
Golden
,
C. H.
Johnson
, and
T.
Kondo
, “
Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria
,”
Science
281
,
1519
(
1998
).
29.
D.
Alabadi
,
T.
Oyama
,
M. J.
Yanovsky
,
F. G.
Harmon
,
P.
Mas
,
S. A.
Kay
, “
Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock
,”
Science
293
,
880
(
2001
).
30.
H.
Tei
,
H.
Okamura
,
Y.
Shigeyoshi
,
C.
Fukuhara
,
R.
Ozawa
,
M.
Hirose
, and
Y.
Sakaki
, “
Circadian oscillation of a mammalian homologue of the Drosophila period gene
,”
Nature (London)
389
,
512
(
1997
).
31.
K.
Bae
,
C.
Lee
,
P. E.
Hardin
, and
I.
Edery
, “
dCLOCK is present in limiting amounts and likely mediates daily interactions between the dCLOCK-CYC transcription factor and the PER-TIM complex
,”
J. Neurosci.
20
,
1746
(
2000
).
32.
M. W.
Merrow
,
N. Y.
Garceau
,
J. C.
Dunlap
, “
Dissection of a circadian oscillation into discrete domains
,”
Proc. Natl. Acad. Sci. U.S.A.
94
,
3877
(
1997
).
33.
D.
Gonze
,
J.
Halloy
,
J.-C.
Leloup
, and
A.
Goldbeter
, “
Stochastic models for circadian rhythms: Effect of molecular noise on periodic and chaotic behaviour
,”
C. R. Biologies
326
,
189
(
2003
).
34.
S. M.
Reppert
and
D. R.
Weaver
, “
Coordination of circadian timing in mammals
,”
Nature (London)
418
,
935
(
2002
).
You do not currently have access to this content.