We study a two-parameter family of standard maps: the so-called two-harmonic family. In particular, we study the areas of lobes formed by the stable and unstable manifolds. Variational methods are used to find heteroclinic orbits and their action. A specific pair of heteroclinic orbits is used to define a difference in action function and to study bifurcations in the stable and unstable manifolds. Using this idea, two phenomena are studied: the change of orientation of lobes and tangential intersections of stable and unstable manifolds.

1.
K.
Alligood
,
E.
Sander
, and
J.
Yorke
,
Ergod. Theory Dyn. Syst.
22
,
953
972
(
2002
).
2.
C.
Baesens
and
R. S.
MacKay
,
Physica D
71
,
372
389
(
1994
).
3.
L.
Faddeev
and
A. Y.
Volkov
,
Lett. Math. Phys.
32
,
125
135
(
1994
).
4.
C.
Golé
,
Symplectic Twist Maps
, in
Advanced Series in Nonlinear Dynamics
Vol.
18
(
World Scientific
,
River Edge, NJ
,
2001
).
5.
V. F.
Lazutkin
,
Algebra Anal.
1
,
116
131
(
1989
).
6.
H. E.
Lomeli
,
Ergod. Theory Dyn. Syst.
17
,
445
462
(
1997
).
7.
H. E.
Lomelí
and
J. D.
Meiss
,
Phys. Lett. A
269
,
309
318
(
2000
).
8.
R. S.
MacKay
,
J. D.
Meiss
, and
I. C.
Percival
,
Physica D
13
,
55
81
(
1984
).
9.
R. S.
MacKay
,
J. D.
Meiss
, and
I. C.
Percival
,
Physica D
27
,
1
20
(
1987
).
10.
J. D.
Meiss
,
Rev. Mod. Phys.
64
,
795
848
(
1992
).
11.
J.
Nocedal
and
S.
Wright
,
Numerical Optimization
, in
Springer Series in Operations Research
(
Springer-Verlag
,
New York
,
2000
).
12.
T.
Qian
and
Z.
Xia
,
Discrete Contin. Dyn. Syst.
9
,
69
95
(
2003
).
13.
C.
Robert
,
K. T.
Alligood
,
E.
Ott
, and
J. A.
Yorke
,
Physica D
144
,
44
61
(
2000
).
14.
M.
Shub
,
Global Stability of Dynamical Systems
(
Springer-Verlag
,
New York
,
1987
).
15.
D.
Sterling
,
H. R.
Dullin
, and
J. D.
Meiss
,
Physica D
134
,
153
184
(
1999
).
16.
Y. B.
Suris
,
Funct. Anal. Appl.
23
,
74
75
(
1989
).
17.
E.
Tabacman
,
Physica D
85
,
548
562
(
1995
).
18.
Q.
Wang
,
Variational Construction of Heteroclinic Orbits for the Monotone Twist Maps
, preprint (
Vanderbilt University
, Nashville, TN, May
1995
).
19.
Q.
Wang
, in
Hamiltonian Dynamics and Celestial Mechanics: A Joint Summer Research Conference on Hamiltonian Dynamics and Celestial Mechanics, June 25–29, 1995, Seattle, Washington)
,
Contemp. Math.
Vol.
198
(
Amer. Math. Soc.
,
Providence, RI
,
1996
), pp.
197
206
.
20.
S.
Wiggins
,
Chaotic Transport in Dynamical Systems
, in
Interdisciplinary Applied Mathematics
Vol.
2
(
Springer-Verlag
,
New York
,
1992
).
21.
Y.
Yamaguchi
and
K.
Tanikawa
,
Phys. Lett. A
280
,
33
36
(
2001
).
You do not currently have access to this content.