We study a two-parameter family of standard maps: the so-called two-harmonic family. In particular, we study the areas of lobes formed by the stable and unstable manifolds. Variational methods are used to find heteroclinic orbits and their action. A specific pair of heteroclinic orbits is used to define a difference in action function and to study bifurcations in the stable and unstable manifolds. Using this idea, two phenomena are studied: the change of orientation of lobes and tangential intersections of stable and unstable manifolds.
REFERENCES
1.
K.
Alligood
, E.
Sander
, and J.
Yorke
, Ergod. Theory Dyn. Syst.
22
, 953
–972
(2002
).2.
C.
Baesens
and R. S.
MacKay
, Physica D
71
, 372
–389
(1994
).3.
L.
Faddeev
and A. Y.
Volkov
, Lett. Math. Phys.
32
, 125
–135
(1994
).4.
C.
Golé
, Symplectic Twist Maps
, in Advanced Series in Nonlinear Dynamics
Vol. 18
(World Scientific
, River Edge, NJ
, 2001
).5.
6.
7.
8.
R. S.
MacKay
, J. D.
Meiss
, and I. C.
Percival
, Physica D
13
, 55
–81
(1984
).9.
R. S.
MacKay
, J. D.
Meiss
, and I. C.
Percival
, Physica D
27
, 1
–20
(1987
).10.
J. D.
Meiss
, Rev. Mod. Phys.
64
, 795
–848
(1992
).11.
J.
Nocedal
and S.
Wright
, Numerical Optimization
, in Springer Series in Operations Research
(Springer-Verlag
, New York
, 2000
).12.
13.
C.
Robert
, K. T.
Alligood
, E.
Ott
, and J. A.
Yorke
, Physica D
144
, 44
–61
(2000
).14.
M.
Shub
, Global Stability of Dynamical Systems
(Springer-Verlag
, New York
, 1987
).15.
D.
Sterling
, H. R.
Dullin
, and J. D.
Meiss
, Physica D
134
, 153
–184
(1999
).16.
Y. B.
Suris
, Funct. Anal. Appl.
23
, 74
–75
(1989
).17.
18.
Q.
Wang
, Variational Construction of Heteroclinic Orbits for the Monotone Twist Maps
, preprint (Vanderbilt University
, Nashville, TN, May 1995
).19.
Q.
Wang
, in Hamiltonian Dynamics and Celestial Mechanics: A Joint Summer Research Conference on Hamiltonian Dynamics and Celestial Mechanics, June 25–29, 1995, Seattle, Washington)
, Contemp. Math.
Vol. 198
(Amer. Math. Soc.
, Providence, RI
, 1996
), pp. 197
–206
.20.
S.
Wiggins
, Chaotic Transport in Dynamical Systems
, in Interdisciplinary Applied Mathematics
Vol. 2
(Springer-Verlag
, New York
, 1992
).21.
© 2006 American Institute of Physics.
2006
American Institute of Physics
You do not currently have access to this content.