We consider continuous maps of the torus, homotopic to the identity, that arise from systems of coupled circle maps and discuss the relationship between network architecture and rotation sets. Our main result is that when the map on the torus is invertible, network architecture can force the set of rotation vectors to lie in a low-dimensional subspace. In particular, the rotation set for an all-to-all coupled system of identical cells must be a subset of a line.

1.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Science
. Cambridge (
Cambridge University Press
,
Cambridge
,
2003
).
2.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer
,
New York
,
1984
).
3.
Y.
Ikegaya
,
G.
Aaron
,
R.
Cossart
,
D.
Aronov
,
I.
Lampl
,
D.
Ferster
, and
R.
Yuste
, “
Synfire chains and cortical songs: Temporal modules of cortical activity
,”
Science
304
,
559
(
2004
).
4.
E.
Izhikevich
, “
Polychronization: Computation with spikes
,”
Neural Comput.
(to be published).
5.
I.
Vragović
,
E.
Louis
,
C.
Boschi
, and
G.
Ortega
, “
Diversity-induced synchronized oscillation in close-to-threshold excitable elements arranged on regular networks
,” cond-mat/0410171,
2005
.
6.
G.
Scheler
, “
Network topology influences synchronization and intrinsic read-out
,” q-bio.NC/0507037,
2005
.
7.
S.
Mangan
and
U.
Alon
, “
Structure and function of the feed-forward loop network motif
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
11980
(
2003
).
8.
A. A.
Prinz
,
D.
Bucher
, and
E.
Marder
, “
Similar network activity from disparate circuit parameters
,”
Nat. Neurosci.
7
,
1345
(
2004
).
9.
S.
Song
,
P.
Sjostrom
,
M.
Reigl
,
S.
Nelson
, and
D.
Chklovskii
, “
Highly nonrandom features of synaptic connectivity in local cortical circuits
,”
PLoS Biol.
3
,
0507
(
2005
).
10.
R.
Albert
and
A.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
(
2002
).
11.
F. C.
Hoppensteadt
and
E.
Izhikevich
,
Weakly Connected Neural Networks
(
Springer
,
New York
,
1997
).
12.
J.
Rubin
and
D.
Terman
, “
Geometric singular perturbation analysis of neuronal dynamics
,” in
Handbook of Dynamical Systems
(
North-Holland
,
Amsterdam
,
2002
), Vol.
2
, pp.
93
146
.
13.
M.
Golubitsky
,
I. N.
Stewart
, and
A.
Török
, “
Patterns of synchrony in coupled cell networks with multiple arrows
,”
SIAM J. Appl. Dyn. Syst.
4
,
78
(
2005
).
14.
I.
Stewart
,
M.
Golubitsky
, and
M.
Pivato
, “
Symmetry groupoids and A A patterns of synchrony in coupled cell networks
,”
SIAM J. Appl. Dyn. Syst.
2
,
609
(
2003
).
15.
A. T.
Winfree
,
The Geometry of Biological Time
,
Interdisciplinary Applied Mathematics
Vol.
12
, 2nd ed. (
Springer
,
New York
,
2001
).
16.
G.
Ermentrout
and
N.
Kopell
, “
Multiple pulse interactions and averaging in systems of coupled neural oscillators
,”
J. Math. Biol.
29
,
195
(
2001
).
17.
M.
Zeller
,
M.
Bauer
, and
W.
Martienssen
, “
Neural dynamics modelled by one-dimensional circle maps
,”
Chaos, Solitons Fractals
5
,
885
(
1995
).
18.
D.
Michaels
,
E.
Matyas
, and
J.
Jalife
, “
Mechanisms of sinoatrial pacemaker synchronization: A new hypothesis
,”
Circ. Res.
61
,
704
(
1987
).
19.
M.
Misiurewicz
and
K.
Ziemian
, “
Rotation sets of maps of tori
,”
J. Lond. Math. Soc.
40
,
490
(
1989
).
20.
A.
Katok
and
B.
Hasselblatt
,
Introduction to the Modern Theory of Dynamical Systems
(
Cambridge University Press
,
Cambridge
,
1995
).
21.
C.
Robinson
,
Dynamical Systems: Stability, Symbolic Dynamics, and Chaos
(
CRC Press
,
New York
,
1998
).
22.
M.
Golubitsky
,
K.
Josić
, and
E.
Shea-Brown
, “
Winding numbers and average frequencies in phase oscillator networks
,”
J. Nonlinear Sci.
(to be published).
23.
M.
Herman
, “
Existence et non existence de tores invariants par des difféomorphismes symplectiques
,”
Séminaire sur les Équations aux Dérivées Partielles 1987–1988
, Exp. No. XIV, 24 pp., École Polytech., Palaiseau,
1988
.
You do not currently have access to this content.