We have simulated numerically the behavior of the one-dimensional, periodic FPU-alpha and Toda lattices to optical and acoustic initial excitations of small-but finite and large amplitudes. For the small-through-intermediate amplitudes (small initial energy per particle) we find nearly recurrent solutions, where the acoustic result is due to the appearance of solitons and where the optical result is due to the appearance of localized breather-like packets. For large amplitudes, we find complex-but-regular behavior for the Toda lattice and “stochastic” or chaotic behaviors for the alpha lattice. We have used the well-known diagnostics: Localization parameter; Lyapounov exponent, and slope of a linear fit to linear normal mode energy spectra. Space-time diagrams of local particle energy and a wave-related quantity, a discretized Riemann invariant are also shown. The discretized Riemann invariants of the alpha lattice reveal soliton and near-soliton properties for acoustic excitations. Except for the localization parameter, there is a clear separation in behaviors at long-time between integrable and nonintegrable systems.

1.
Berman
,
G. P.
, and
Izrailev
,
F. M.
(
2005
). “
The Fermi-Pasta-Ulam problem: Fifty years of progress
,”
Chaos
15
,
015104
.
2.
Budinsky
,
N.
, and
Bountis
,
T.
(
1983
). “
Stability of nonlinear modes and chaotic properties of 1D Fermi-Pasta-Ulam lattices
,”
Physica D
8
,
445
452
.
3.
Casetti
,
L.
,
Cerruti-Sola
,
M.
,
Pettini
,
M.
, and
Cohen
,
E. G. D.
(
1997
). “
The Fermi-Pasta-Ulam problem revisited: Stochasticity thresholds in nonlinear Hamiltonian systems
,”
Phys. Rev. E
55
,
6566
6574
.
4.
Chechin
,
G. M.
,
Novikova
,
N. V.
, and
Abramenko
,
A. A.
(
2002
). “
Bushes of vibrational modes for Fermi-Pasta-Ulam chains
,”
Physica D
166
,
208
238
.
5.
Chechin
,
G. M.
,
Ryabov
,
D. S.
, and
Zhukov
,
K. G.
(
2004
). “
Stability of low-dimensional bushes of vibrational modes in the Fermi-Pasta-Ulam chains
”, http://arxiv.org/PS_cache/nlin/pdf/0403/0403040.pdf
6.
Dauxois
,
T.
,
Khomeriki
,
R.
,
Piazza
,
F.
, and
Ruffo
,
S.
(
2005
). “
The anti-FPU problem
,”
Chaos
15
,
015110
.
7.
Dauxois
,
T.
,
Ruffo
,
S.
, and
Torcini
,
A.
(
1997
). “
Modulational estimate for the maximal Lyapunov exponent in Fermi-Pasta-Ulam chains
,”
Phys. Rev. E
56
,
R6229
R6232
.
8.
Dauxois
,
T.
,
Ruffo
,
S.
, and
Torcini
,
A.
(
1998
). “
Analytical estimation of the maximal Lyapunov exponent in oscillator chains
,”
J. Phys. IV
8
, Pr. 6,
147
156
.
9.
Deem
,
G. S.
,
Zabusky
,
N. J.
, and
Kruskal
,
M. D.
(
1965
). Formation, propagation, and interaction of solitons in nonlinear dispersive media. This 16mm film had three parts: (1) Solution of the KdV equation with a sinusoidal initial condition; (2) Solution of the modified-KdV equation with a compressive and rarefactive soliton initial condition; (3) Solution of the nonlinear lattice with a high-frequency (“optical”) initial condition. A 16mm film that was available on free loan from the Bell Telephone Labs film library for over 10years and will soon be available on the internet at my URL.
10.
Fermi
,
E.
,
Pasta
,
J.
, and
Ulam
,
S. M.
(
1955
). “
Studies of nonlinear problems
,” LANL Report, No. 1940;
see Fermi’s collected works or Stanislaw Ulam
Sets, Numbers, and Universes
, Selected Papers (
MIT Press
,
Cambridge
,
1974
).
11.
Izrailev
,
F. M.
, and
Chirikov
,
B. V.
(
1966
). “
Statistical properties of a nonlinear string
,” in Russian,
Sov. Phys. Dokl.
11
,
30
(1965).
12.
Kruskal
,
M. D.
, and
Zabusky
,
N. J.
(
1964
). “
Stroboscopic perturbation procedure for treating a class of nonlinear wave equations
,”
J. Math. Phys.
2
,
231
244
.
13.
Pettini
,
M.
,
Casetti
,
L.
,
Cerruti-Sola
,
M.
,
Franzosi
,
R.
, and
Cohen
,
E. G. D.
(
2005
). “
Weak and strong chaos in Fermi-Pasta-Ulam models and beyond
,”
Chaos
15
,
015106
.
14.
Rink
,
B.
(
2001
). “
Symmetry and resonance in periodic FPU chains
,”
Commun. Math. Phys.
218
,
665
685
;
15.
Rink
,
B.
(private communication, 2005).
16.
Shelepansky
,
D.
(
1997
). “
Low energy chaos in the Fermi-Pasta-Ulam problem
,”
Nonlinearity
10
,
1331
38
.
17.
Toda
,
M.
(
1967a
). “
Vibration of a Chain with Nonlinear Interaction
,”
J. Phys. Soc. Jpn.
22
,
431
436
.
18.
Toda
,
M.
. (
1967b
).
J. Phys. Soc. Jpn.
23
,
501
.
19.
Toda
,
M.
(
1969
). “
Mechanics and Statistical Mechanics of Nonlinear Chains
,”
J. Phys. Soc. Jpn.
26
, Suppl.
235
237
;
Invited paper presented by M. Toda at the International Conference on Statistical Mechanics
, Kyoto, Japan, September, 1968.
20.
Toda
,
M.
(
1989
).
Theory of Nonlinear lattices
, 2nd ed. (
Springer
,
Berlin
).
21.
Tuck
,
J. L.
, and
Menzel
,
M. T.
(
1972
). “
The superperiod of the nonlinear weighted string (FPU) problem
,”
Adv. Math.
9
,
399
.
22.
Yoshida
,
H.
(
1990
). “
Construction of higher order symplectic integrators
,”
Phys. Lett. A
150
, no.
5–7
,
262
268
.
23.
Zabusky
,
N. J.
, and
Kruskal
,
M. D.
(
1965
). “
Interaction of solitons in a collisionless plasma and the recurrence of initial states
,”
Phys. Rev. Lett.
15
,
240
243
.
24.
Zabusky
,
N. J.
(
1962
). “
Exact solution for the vibrations of a nonlinear continuous model string
,”
J. Math. Phys.
5
,
497
499
.
25.
Zabusky
,
N. J.
(
1967
). “
A synergetic approach to problems of nonlinear dispersive wave propagation and interaction
,” in
Proceedings of the Symposium Nonlinear Partial Differential Equations
, edited by
W.
Ames
(University of Delaware, Newark, Delaware, published by
Academic Press
, New York, 1967). This invited paper was presented in 1965.
26.
Zabusky
,
N. J.
(
1969
). “
Nonlinear lattice dynamics and energy sharing
,”
J. Phys. Soc. Jpn.
26
, Suppl., p.
196
;
Invited paper presented at the International Conference on Statistical Mechanics
, Kyoto, Japan, September, 1968.
27.
Zabusky
,
N. J.
(
1981
). “
Computational synergetics and mathematical innovation
,”
J. Comput. Phys.
43
,
195
249
.
28.
Zabusky
,
N. J.
(
2005
). “
Fermi-Pasta-Ulam, solitons and the fabric of nonlinear and computational science: History, synergetics and visiometrics
,”
Chaos
15
,
015102
.
29.
Zabusky
,
N. J.
, and
Deem
,
G. S.
(
1967
). “
Dynamics of nonlinear lattices I, localized optical excitations, acoustic radiation and strong nonlinear behavior
,”
J. Comput. Phys.
2
,
126
153
.
You do not currently have access to this content.