We study the dynamics of one-particle and few-particle billiard systems in containers of various shapes. In few-particle systems, the particles collide elastically both against the boundary and against each other. In the one-particle case, we investigate the formation and destruction of resonance islands in (generalized) mushroom billiards, which are a recently discovered class of Hamiltonian systems with mixed regular-chaotic dynamics. In the few-particle case, we compare the dynamics in container geometries whose counterpart one-particle billiards are integrable, chaotic, and mixed. One of our findings is that two-, three-, and four-particle billiards confined to containers with integrable one-particle counterparts inherit some integrals of motion and exhibit a regular partition of phase space into ergodic components of positive measure. Therefore, the shape of a container matters not only for noninteracting particles but also for interacting particles.

1.
V. I.
Arnold
, “
Proof of A. N. Kolmogorov’s theorem on the preservation of quasiperiodic motions under small perturbations of the Hamiltonian
,”
Russ. Math. Surveys
18
,
9
36
(
1963
).
2.
V. I.
Arnold
, “
Small divisor problems in classical and celestial mechanics
,”
Russ. Math. Surveys
18
,
85
192
(
1963
).
3.
A. N.
Kolmogorov
, “
On conservation of conditionally periodic motions under small perturbations of the Hamiltonian
,”
Dokl. Akad. Nauk SSSR
98
,
527
530
(
1954
).
4.
J.
Moser
, “
On invariant curves of area-preserving mappings of an annulus
,”
Nachr. Akad. Wiss. Goett. II, Math.-Phys. Kl.
2
,
1
20
(
1962
).
5.
D. V.
Anosov
and
Ya. G.
Sinai
, “
Some smooth ergodic systems
,”
Russ. Math. Surveys
22
,
103
167
(
1967
).
6.
Ya. G.
Sinai
, “
On the foundation of the ergodic hypothesis for a dynamical system of statistical mechanics
,”
Dokl. Akad. Nauk SSSR
153
,
1261
1264
(
1963
).
7.
S.
Smale
, “
Differentiable dynamical systems
,”
Bull. Am. Math. Soc.
73
,
747
817
(
1967
).
8.
M. V.
Berry
, “
Regularity and chaos in classical mechanics, illustrated by three deformations of a circular billiard
,”
Eur. J. Phys.
2
,
91
102
(
1981
).
9.
S.
De Bièvre
,
P. E.
Parris
, and
A.
Silvius
, “
Chaotic dynamics of a free particle interacting linearly with a harmonic oscillator
,”
Physica D
208
,
96
114
(
2005
).
10.
N.
Saitô
,
H.
Hirooka
,
J.
Ford
,
F.
Vivaldi
, and
G. H.
Walker
, “
Numerical study of billiard motion in an annulus bounded by non-concentric circles
,”
Physica D
5
,
273
286
(
1982
).
11.
L. A.
Bunimovich
, “
Mushrooms and other billiards with divided phase space
,”
Chaos
11
,
802
808
(
2001
).
12.
L. A.
Bunimovich
, “
Kinematics, equilibrium, and shape in Hamiltonian systems: The ‘LAB’ effect
,”
Chaos
13
,
903
912
(
2003
).
13.
E. G.
Altmann
,
A. E.
Motter
, and
H.
Kantz
, “
Stickiness in mushroom billiards
,”
Chaos
15
,
033105
(
2005
).
14.
A.
Kudrolli
,
V.
Kidambi
, and
S.
Sridhar
, “
Experimental studies of chaos and localization in quantum wave functions
,”
Phys. Rev. Lett.
75
,
822
825
(
1995
).
15.
J.
Stein
and
H. J.
Stöckmann
, “
Experimental determination of billiard wave functions
,”
Phys. Rev. Lett.
68
,
2867
2870
(
1992
).
16.
H. J.
Stöckmann
and
J.
Stein
, “
Quantum chaos in billiards studied by microwave-absorption
,”
Phys. Rev. Lett.
64
,
2215
2218
(
1990
).
17.
C. M.
Marcus
,
A. J.
Rimberg
,
R. M.
Westervelt
,
P. F.
Hopkins
, and
A. C.
Gossard
, “
Conductance fluctuations and chaotic scattering in ballistic microstructures
,”
Phys. Rev. Lett.
69
,
506
509
(
1992
).
18.
M. F.
Andersen
,
A.
Kaplan
,
T.
Grünzweig
, and
N.
Davidson
, “
Decay of quantum correlations in atom optics billiards with chaotic and mixed dynamics
,” e-print quant-ph/0404118.
19.
N.
Friedman
,
A.
Kaplan
,
D.
Carasso
, and
N.
Davidson
, “
Observation of chaotic and regular dynamics in atom-optics billiards
,”
Phys. Rev. Lett.
86
,
1518
1521
(
2001
).
20.
C.
Zhang
,
J.
Liu
,
M. G.
Raizen
, and
Q.
Niu
, “
Quantum chaos of Bogoliubov waves for a Bose-Einstein condensate in stadium billiards
,”
Phys. Rev. Lett.
93
,
074101
(
2004
).
21.
B. J.
Alder
and
T. E.
Wainwright
, “
Decay of velocity autocorrelation function
,”
Phys. Rev. A
1
,
18
21
(
1970
).
22.
Ch.
Dellago
,
H. A.
Posch
, and
W. G.
Hoover
, “
Lyapunov instability in a system of hard disks in equilibrium and nonequilibrium steady states
,”
Phys. Rev. E
53
,
1485
1501
(
1996
).
23.
H. A.
Posch
and
R.
Hirschl
, “
Simulations of billiards and of hard body fluids
,” in
Hard Ball Systems and the Lorentz Gas
, Vol.
101
of
Encyclopaedia of Mathematical Sciences
, edited by
D.
Szász
(
Springer-Verlag
,
Berlin, Germany
,
2000
), pp.
279
314
.
24.
D. M.
Harber
,
H. J.
Lewandowski
,
J. M.
McGuirk
, and
E. A.
Cornell
, “
Effect of cold collisions on spin coherence and resonance shifts in a magnetically trapped ultracold gas
,”
Phys. Rev. A
66
,
053616
(
2002
).
25.
P.
Cvitanović
,
R.
Artuso
,
R.
Mainieri
,
G.
Tanner
, and
G.
Vattay
,
Chaos: Classical and Quantum
, 11th ed. (
Niels Bohr Institute
,
Copenhagen
,
2005
);
26.
Ya. G.
Sinai
, “
WHAT IS…a billiard
,”
Not. Am. Math. Soc.
51
,
412
413
(
2004
).
27.
A.
Katok
and
B.
Hasselblatt
.
Introduction to the Modern Theory of Dynamical Systems
(
Cambridge University Press
,
New York
,
1995
).
28.
Ya. G.
Sinai
, “
Dynamical systems with elastic reflections
,”
Russ. Math. Surveys
25
,
137
188
(
1970
).
29.
P.
Garrido
and
G.
Gallavotti
, “
Billiards correlation functions
,”
J. Stat. Phys.
76
,
549
586
(
1994
).
30.
M. C.
Gutzwiller
,
Chaos in Classical and Quantum Mechanics
,
No. 1 in Interdisciplinary Applied Mathematics
(
Springer-Verlag
,
New York
,
1990
).
31.
S. W.
MacDonald
and
A. N.
Kaufman
, “
Spectrum and eigenfunctions for a Hamiltonian with stochastic trajectories
,”
Phys. Rev. Lett.
42
,
1189
1191
(
1979
).
32.
S. W.
MacDonald
and
A. N.
Kaufman
, “
Wave chaos in the stadium: Statistical properties of short-wave solutions of the Helmholtz equation
,”
Phys. Rev. A
37
,
3067
3086
(
1988
).
33.
V.
Lopac
,
I.
Mrkonjic
,
N.
Pavin
, and
D.
Radic
, “
Chaotic dynamics of the elliptical stadium billiard in the full parameter space
,” e-print nlin.CD/0507014.
34.
G.
Del Magno
and
R.
Markarian
, “
Bernoulli elliptical stadia
,”
Commun. Math. Phys.
233
,
211
230
(
2003
).
35.
S.
Lansel
and
M. A.
Porter
, “
A graphical user interface to simulate classical billiard systems
,” e-print nlin.CD/0405003.
36.
M.
Résibois
and
M.
De Leener
,
Classical Kinetic Theory of Fluids
(
John Wiley and Sons
,
New York
,
1977
).
You do not currently have access to this content.