We study the topology of several music recommendation networks, which arise from relationships between artist, co-occurrence of songs in play lists or experts’ recommendation. The analysis uncovers the emergence of complex network phenomena in these kinds of recommendation networks, built considering artists as nodes and their resemblance as links. We observe structural properties that provide some hints on navigation and possible optimizations on the design of music recommendation systems. Finally, the analysis derived from existing music knowledge sources provides a deeper understanding of the human music similarity perception.

1.
D.
de Lima e Silva
,
M. Medeiros
Soares
,
M. V. C.
Henriques
,
M. T.
Schivani Alves
,
S. G.
de Aguilar
,
T. P.
de Carvalho
,
G.
Corso
, and
L. S.
Lucena
, “
The complex network of the brazilian popular music
,”
Physica A
332
,
559
(
2003
).
2.
P.
Gleiser
and
L.
Danon
, “
Community structure in Jazz
,”
Adv. Complex Syst.
6
,
565
(
2003
).
3.
A.-L.
Barabási
,
Linked: The New Science of Networks
(
Perseus
, Cambridge, MA,
2002
).
4.
M. E. J.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
,
167
(
2003
).
5.
D. P.
Ellis
,
B.
Withman
,
A.
Berenzweig
, and
S.
Lawrence
,
Proceedings of the International Symposium on Music Information Retrieval
,
Paris
, France (
2002
), pp.
170
177
.
10.
B.
Sarwar
,
G.
Karypis
,
J.
Konstan
, and
J.
Riedl
,
Proceedings of the 10th International World Wide Web Conference
,
Hong Kong
(
2001
), pp.
285
295
.
11.
G.
Linden
,
B.
Smith
, and
J.
York
,
IEEE Internet Computing
4
,
76
(
2003
).
12.
A.
Rapoport
,
Bull. Math. Biophys.
10
,
145
(
1968
).
13.
P.
Erdös
and
A.
Réyi
,
Publ. Math. (Debrecen)
6
,
290
(
1959
).
14.
D. J.
Watts
and
S. H.
Strogatz
,
Nature (London)
393
,
440
(
1998
).
15.
J. M.
Kleinberg
,
Nature (London)
406
,
845
(
2000
).
16.
D. J.
Watts
,
P. S.
Dodds
, and
M. E. J.
Newman
,
Science
296
,
1302
(
2002
).
17.
A. P. S.
de Moura
,
A. E.
Motter
, and
C.
Grebogi
,
Phys. Rev. E
68
,
036106
(
2003
).
18.
L. A. N.
Amaral
,
A.
Scala
,
M.
Barthélémy
, and
H. E.
Stanley
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
11149
(
2000
).
19.

The value of kmax, which is the highest degree in the network, can be estimated in scale-free networks as kmaxn1γ1.

20.
A. L.
Barabási
and
R.
Albert
,
Science
286
,
509
(
1999
).
21.
A.
Broder
,
R.
Kumar
,
F.
Maghoul
,
P.
Raghavan
,
S.
Rajagopalan
,
R.
Sata
,
A.
Tomkins
, and
J.
Wiener
,
Comput. Netw.
33
,
309
(
2000
).
22.
H.
Jeong
,
S.
Mason
,
A.-L.
Barabási
, and
Z. N.
Oltvai
,
Nature (London)
411
,
41
(
2001
).
23.
J.
Abello
,
A.
Buchsbau
, and
J. A.
Wesstbrook
,
Lect. Notes Comput. Sci.
1461
,
332
(
1998
).
24.

Note that in this case we refer to degree distribution P(k) instead of cumulative degree distribution Pc(k). Both power-law exponents are related by the expression γc=γ1.

25.
S.
Maslov
and
Y.-C.
Zhang
,
Phys. Rev. Lett.
87
,
248701
(
2001
).
26.
S.
Render
,
Eur. Phys. J. B
4
,
131
(
1998
).
28.
S.
Mossa
,
M.
Barthélemy
,
H. E.
Stanley
, and
L. A. N.
Amaral
,
Phys. Rev. Lett.
88
,
138701
(
2002
).
29.
A.
Berenzweig
,
B.
Logan
,
D.
Ellis
, and
B.
Whitman
,
Comput. Music J.
28
,
63
(
2004
).
30.
B. J.
Kim
,
C. N.
Yoon
,
S. K.
Han
, and
H.
Jeong
,
Phys. Rev. E
65
,
027103
(
2002
).
31.
L. A.
Adamic
,
A. R.
Puniyani
, and
B. A.
Huberman
,
Phys. Rev. E
64
,
046135
(
2001
).
32.
F.
Menczer
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
14014
(
2002
).
You do not currently have access to this content.