This paper studies the adaptive complete synchronization of chaotic and hyperchaotic systems with fully unknown parameters. In practical situations, some systems’ parameters cannot be exactly known a priori, and the uncertainties often affect the stability of the process of synchronization of the chaotic oscillators. An adaptive scheme is proposed to compensate for the effects of parameters' uncertainty based on the structure of chaotic systems in this paper. Based on the Lyapunov stability theorem, an adaptive controller and a parameters update law can be designed for the synchronization of chaotic and hyperchaotic systems. The drive and response systems can be nonidentical, even with different order. Three illustrative examples are given to demonstrate the validity of this technique, and numerical simulations are also given to show the effectiveness of the proposed chaos synchronization method. In addition, this synchronization scheme is quite robust against the effect of noise.

1.
L. M.
Pecora
and
T. L.
Carroll
,
Phys. Rev. Lett.
64
,
821
(
1990
).
2.
T. L.
Carroll
and
L. M.
Pecora
,
IEEE Trans. Circuits Syst.
38
,
453
(
1991
).
3.
S.
Boccaletti
,
J.
Kurths
,
G.
Osipov
,
D. L.
Valladares
, and
C. S.
Zhou
,
Phys. Rep.
366
,
1
(
2002
).
4.
J.
Garcia-Ojalvo
and
R.
Roy
,
Phys. Rev. Lett.
86
,
5204
(
2001
).
5.
K.
Murali
and
M.
Lakshmanan
,
Phys. Rev. E
49
,
4882
(
1994
).
6.
T.
Yang
and
L. O.
Chua
,
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
44
,
976
(
1997
).
7.
S.
Bowong
,
Phys. Lett. A
326
(
1–2
),
102
(
2004
).
8.
L.
Kocarev
and
U.
Parlitz
,
Phys. Rev. Lett.
76
,
1816
(
1996
).
9.
A. E.
Hramov
and
A. A.
Koronovskii
,
Phys. Rev. E
71
,
067201
(
2005
).
10.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
,
Phys. Rev. Lett.
78
,
4193
(
1997
).
11.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
,
Phys. Rev. Lett.
76
,
1804
(
1996
).
12.
A. A.
Koronovskii
and
A. E.
Hramov
,
Tech. Phys. Lett.
30
,
587
(
2004
).
13.
A. E.
Hramov
and
A. A.
Koronovskii
,
Chaos
14
,
603
(
2004
).
14.
A. E.
Hramov
,
A. A.
Koronovskii
,
P. V.
Popov
, and
I. S.
Rempen
,
Chaos
15
,
013705
(
2005
).
15.
A. E.
Hramov
,
A. A.
Koronovskii
,
M. K.
Kurovskaya
, and
O. I.
Moskalenko
,
Phys. Rev. E
71
,
056204
(
2005
).
16.
A. E.
Hramov
and
A. A.
Koronovskii
,
Physica D
206
,
252
(
2005
).
17.
A. E.
Hramov
,
A. A.
Koronovskii
, and
Y. I.
Levin
,
JETP
100
,
784
(
2005
).
18.
S.
Boccaletti
and
D. L.
Valladares
,
Phys. Rev. E
62
,
7497
(
2000
).
19.
A. E.
Hramov
and
A. A.
Koronovskii
,
Europhys. Lett.
70
,
169
(
2005
).
20.
E.
Ott
,
C.
Grebogi
, and
J. A.
Yorke
,
Phys. Rev. Lett.
64
,
1196
(
1990
).
21.
J. H.
Peng
,
E. J.
Ding
,
M.
Ding
, and
W.
Yang
,
Phys. Rev. Lett.
76
,
904
(
1996
).
22.
S. H.
Chen
and
D. X.
Wang
,
Chaos
14
,
539
(
2004
).
23.
J. F.
Heagy
,
T. L.
Carroll
, and
L. M.
Pecora
,
Phys. Rev. E
50
,
1874
(
1994
).
24.
J. F.
Heagy
,
T. L.
Carroll
, and
L. M.
Pecora
,
Phys. Rev. Lett.
73
,
3528
(
1994
).
25.
J. Q.
Fang
,
Y.
Hong
, and
G.
Chen
,
Phys. Rev. E
59
,
R2523
(
1999
).
26.
X.
Yu
,
G.
Chen
,
Y.
Xia
,
Y. X.
Song
, and
Z. W.
Cao
,
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
48
,
930
(
2001
).
27.
K.
Tanaka
and
H. O.
Wang
,
IEEE World Congress on Fuzzy Systems Proceedings
,
1998
, Vol.
1
, p.
434
.
28.
K. Y.
Lian
,
T. S.
Chiang
,
C. S.
Chiu
, and
P.
Liu
,
IEEE Trans. Syst. Man Cybern.
B
31
,
66
(
2001
).
29.
T.
Yang
,
L. B.
Yang
, and
C. M.
Yang
,
Physica D
110
,
18
(
1997
).
30.
E. W.
Bai
and
K. E.
Lonngren
,
Chaos, Solitons Fractals
8
,
51
(
1997
).
31.
E. W.
Bai
and
K. E.
Lonngren
, Chaos,
Chaos, Solitons Fractals
11
,
1041
(
2000
).
32.
H. N.
Agiza
and
M. T.
Yassen
,
Phys. Lett. A
278
,
191
(
2001
).
33.
A. S.
Hegazi
,
H. N.
Agiza
, and
M.
El-Dessoky
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
12
,
1579
(
2002
).
34.
S. H.
Chen
,
J.
Hu
,
C. P.
Wang
, and
J. H.
,
Phys. Lett. A
321
,
50
(
2004
).
35.
D. B.
Huang
,
Phys. Rev. E
71
,
037203
(
2005
).
36.
D. B.
Huang
and
R. W.
Guo
,
Chaos
14
,
152
(
2004
).
37.
M. T.
Yassen
,
Appl. Math. Comput.
135
,
113
(
2001
).
38.
J. D.
Cao
,
H. X.
Li
, and
D. W. C.
Ho
,
Chaos, Solitons Fractals
23
,
1285
(
2005
).
39.
J. H.
Park
and
O. M.
Kwon
,
Chaos, Solitons Fractals
23
,
445
(
2005
).
40.
C.
Schafer
,
M. G.
Rosenblum
,
J.
Kurths
, and
H. H.
Abel
,
Nature (London)
392
,
239
(
1998
).
41.
D.
Terman
,
N.
Koppel
, and
A.
Bose
,
Physica D
117
,
241
(
1998
).
43.
Y.
Li
,
W. K. S.
Tang
, and
G. R.
Chen
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
(in press).
44.
G.
Chen
and
T.
Ueta
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
9
,
1465
(
1999
).
45.
46.
J.
Lasalle
and
S.
Lefschtg
,
Stability by Lyapunov’s Direct Method with Application
(
Academic
, New York,
1961
).
47.
S-Y
Kim
,
W.
Lim
,
A.
Jalnine
, and
S. P.
Kuznetsov
,
Phys. Rev. E
67
,
016217
(
2003
).
You do not currently have access to this content.