Nonlinear internal solitary waves observed in laboratory experiments are discussed from the standpoint of their relation to different soliton theories, from the classical integrable models such as the Korteweg–de Vries, Gardner, Benjamin–Ono, and Joseph–Kubota–Ko–Dobbs equations and their modifications, through the nonintegrable models describing higher-order nonlinear effects, viscosity, rotation, and cylindrical spreading, to the strongly nonlinear models. First, these theoretical models are briefly described and, then, laboratory data and their comparison with the theory are presented.

1.
B.
Franklin
, “
Behavior of oil on water. Letter to John Pringle. Philadelphia, Dec. 1, 1762
,” in
Experiments and Observations on Electricity
, London,
1769
, pp.
142
144
.
2.
M. J.
Ablowitz
and
H.
Segur
,
Solitons and the Inverse Scattering Transform
(
SIAM
, Philadelphia,
1981
).
3.
L. A.
Ostrovsky
, “
Nonlinear internal waves in the ocean
,” in
Nonlinear Waves
,
Proceedings of IV Gorky School on Nonlinear Waves
,
1979
, pp.
292
329
(in Russian).
4.
R.
Grimshaw
, “
Internal solitary waves
,” Chap. 1 in the book
Environmental Stratified Flows
, edited by
R.
Grimshaw
(
Kluwer Academic
, New York,
2002
), pp.
1
27
.
5.
L. A.
Ostrovsky
, “
Nonlinear internal waves in a rotating ocean
,”
Okeanologia
18
,
181
191
(
1978
) (in Russian)
L. A.
Ostrovsky
,[English translation:
Oceanology (Engl. Transl.)
18
,
119
125
(
1978
)].
6.
L. A.
Ostrovsky
and
Yu. A.
Stepanyants
, “
Do internal solitons exist in the ocean?
,”
Rev. Geophys.
27
,
293
310
(
1989
).
7.
J. R.
Apel
,
L. A.
Ostrovsky
,
Y. A.
Stepanyants
, and
J. F.
Lynch
, “
Internal solitons in the ocean
,”
Technical Report
WHOI-05,
2005
.
8.
L. R.
Walker
, “
Interfacial solitary waves in a two-fluid medium
,”
Phys. Fluids
16
,
1796
1804
(
1973
).
9.
T.
Kakutani
and
N.
Yamasaki
, “
Solitary waves on a two-layer fluid
,”
J. Phys. Soc. Jpn.
45
,
674
679
(
1978
).
10.
C.
Leone
,
H.
Segur
, and
J. L.
Hammack
, “
Viscous decay of long internal solitary waves
,”
Phys. Fluids
25
,
942
244
(
1982
).
11.
G. H.
Keulegan
, “
Characteristics of internal solitary waves
,”
J. Res. Natl. Bur. Stand.
51
,
133
140
(
1953
).
12.
R.
Grimshaw
,
E. N.
Pelinovsky
, and
T. G.
Talipova
, “
The modified Korteweg–de Vries equation in the theory of large-amplitude internal waves
,”
Nonlinear Processes Geophys.
4
,
237
250
(
1997
).
13.
T. G.
Talipova
,
E. N.
Pelinovsky
,
K.
Lamb
,
R.
Grimshaw
, and
P.
Holloway
, “
Cubic nonlinearity effects in the propagation of intense internal waves
,”
Dokl. Akad. Nauk SSSR
364
,
824
827
(
1999
) (in Russian)
T. G.
Talipova
,
E. N.
Pelinovsky
,
K.
Lamb
,
R.
Grimshaw
,and
P.
Holloway
,[English translation:
Dokl. Earth Sci.
365
,
241
244
(
1999
)].
14.
M.
Funacoshi
and
M.
Oikawa
, “
Long internal waves of large amplitude in a two-layer fluid
,”
J. Phys. Soc. Jpn.
55
,
128
144
(
1986
).
15.
R.
Grimshaw
,
E.
Pelinovsky
,
Y.
Stepanyants
, and
T.
Talipova
, “
Modeling internal solitary waves on the Australian North West Shelf
,”
Mar. Freshwater Res.
(to be published). See also preprint 05–05,
Loughborough University
, Department of Mathematical Sciences,
15
pages; website: http://www.lboro.ac.uk/departments/ma/preprints/papers05/05–05abs.html
16.
R. E.
Davis
and
A.
Acrivos
, “
Solitary internal waves in deep water
,”
J. Fluid Mech.
29
,
593
607
(
1967
).
17.
T. W.
Kao
and
H. P.
Pao
, “
Wake collapse in the thermocline and internal solitary waves
,”
J. Fluid Mech.
97
,
115
127
(
1979
).
18.
T. W.
Kao
,
F.-Sh.
Pan
, and
D.
Renouard
, “
Internal solitons on the pycnocline: Generation, propagation, and shoaling and breaking over a slope
,”
J. Fluid Mech.
159
,
19
53
(
1985
).
19.
J.
Gan
and
R. G.
Ingram
, “
Internal hydraulics, solitons and associated mixing in a stratified Sound
,”
J. Geophys. Res.
97
,
9669
9688
(
1992
).
20.
V. I.
Karpman
,
Nonlinear Waves in Dispersive Media
(
Nauka
, Moscow,
1973
) (in Russian)
[English translation:
Nonlinear Waves in Dispersive Media
(
Pergamon
, Oxford,
1973
)].
21.
C.
Koop
and
G.
Butler
, “
An investigation of internal solitary waves in a two-fluid system
,”
J. Fluid Mech.
112
,
225
251
(
1981
).
22.
H.
Segur
and
J. L.
Hammack
, “
Soliton models of long internal waves
,”
J. Fluid Mech.
118
,
285
304
(
1982
).
23.
V. I.
Bukreev
and
N. V.
Gavrilov
, “
Experimental investigation of solitary internal waves in a two-layer fluid
,”
Zh. Prikl. Mekh. Tekhn. Fiziki (PMTF)
N.5
,
51
56
(
1983
) (in Russian)
V. I.
Bukreev
and
N. V.
Gavrilov
,[English translation:
Sov. Phys. J. Appl. Mech. Tech. Phys.
n.5
(
1983
)].
24.
K. A.
Gorshkov
and
V. V.
Papko
, “
Non-adiabatic stage of damping of solitons and the intermediate asymptotics
,”
Izv. Vyssh. Uchebn. Zaved., Radiofiz.
20
,
360
365
(
1977
) (in Russian)
K. A.
Gorshkov
and
V. V.
Papko
,[English translation:
Radiophys. Quantum Electron.
20
, (
1977
)].
25.
Ch.-Y.
Lee
and
R. C.
Beardsley
, “
The generation of long nonlinear internal waves in a weakly stratified shear flows
,”
J. Geophys. Res.
79
,
453
457
(
1974
).
26.
J.
Gear
and
R.
Grimshaw
, “
A second-order theory for solitary waves in shallow fluids
,”
Phys. Fluids
26
,
14
29
(
1983
).
27.
A. K.
Liu
,
J. R.
Holbrook
, and
J. R.
Apel
, “
Nonlinear internal wave evolution in the Sulu Sea
,”
J. Phys. Oceanogr.
15
,
1613
1624
(
1985
).
28.
L.
Ostrovsky
and
E.
Pelinovsky
, “
Nonlinear evolution of tsunami waves
,”
Bull. Roy. Soc. New Zealand
15
,
203
211
(
1976
).
29.
A. R.
Osborne
, “
The inverse scattering transform: tools for the nonlinear Fourier analysis and filtering of ocean surface waves
,”
Chaos, Solitons Fractals
5
,
2623
2637
(
1995
).
30.
J.-G.
Caputo
and
Y. A.
Stepanyants
, “
Bore Formation, Evolution and Disintegration into Solitons in Shallow Inhomogeneous Channels
,”
Nonlinear Processes Geophys.
10
,
407
424
(
2003
).
31.
R.
Grimshaw
, “
The solitary wave in water of variable depth
,”
J. Fluid Mech.
42
,
639
656
(
1970
);
R.
Grimshaw
,“
The solitary wave in water of variable depth. Part 2
,”
J. Fluid Mech.
46
,
611
622
(
1971
).
32.
T.
Kakutani
and
K.
Matsuuchi
, “
Effect of viscosity on long gravity waves
,”
J. Phys. Soc. Jpn.
39
,
237
246
(
1975
).
33.
J. W.
Miles
, “
Damping of weakly nonlinear shallow-water waves
,”
J. Fluid Mech.
76
,
251
257
(
1976
).
34.
K. P.
Das
and
J.
Chakrabarti
, “
The Korteweg–de Vries equation modified by viscosity for waves in a two-layer fluid in a channel of arbitrary cross section
,”
Phys. Fluids
29
,
661
666
(
1986
).
35.
K. R.
Helfrich
, “
Internal solitary wave breaking and run-up on a uniform slope
,”
J. Fluid Mech.
243
,
133
154
(
1992
).
36.
K. A.
Gorshkov
and
L. A.
Ostrovsky
, “
Interaction of solitons in non-integrable systems: Direct perturbation method and applications
,”
Physica D
3
,
248
438
(
1981
).
37.
R.
Grimshaw
, “
Evolution equations for weakly nonlinear long internal waves in a rotating fluid
,”
Stud. Appl. Math.
73
,
1
33
(
1985
).
38.
D.
Renouard
and
J.-P.
Germain
, “
Experimental study of long nonlinear internal waves in rotating fluid
,”
Ann. Geophys. (Germany)
12
,
254
264
(
1994
).
39.
L. A.
Ostrovsky
and
Yu. A.
Stepanyants
, “
Nonlinear surface and internal waves in rotating fluids
,” in
Nonlinear Waves 3
,
Proceedings of the 1989 Gorky School on Nonlinear Waves
, edited by
A. V.
Gaponov-Grekhov
,
M. I.
Rabinovich
, and
J.
Engelbrecht
(
Springer-Verlag
, Berlin, Heidelberg,
1990
), pp.
106
128
.
[In Russian: in
Nonlinear Waves. Physics and Astrophysics
(
Nauka
, Moscow,
1993
), pp.
132
153
.]
40.
R. H. J.
Grimshaw
,
L. A.
Ostrovsky
,
V. I.
Shrira
, and
Y. A.
Stepanyants
, “
Long nonlinear surface and internal gravity waves in a rotating ocean
,”
Surv. Geophys.
19
,
289
338
(
1998
).
41.
A. L.
New
and
M.
Esteban
, “
A new Korteweg–de Vries-type theory for internal solitary waves in a rotating continuously-stratified ocean
,” in
Near-Surface Ocean Layer. V. 1. Physical Processes and Remote Sensing
, Collection of Scientific Papers, edited by
E. N.
Pelinovsky
and
V. I.
Talanov
,
Nizhny Novgorod
, IAP RAS,
1999
, pp.
173
203
.
42.
Y.
Liu
and
V.
Varlamov
, “
Stability of solitary waves and weak rotation limit for the Ostrovsky equation
,”
J. Diff. Eqns.
203
,
159
183
(
2004
).
43.
R. H. J.
Grimshaw
,
J.-M.
He
, and
L. A.
Ostrovsky
, “
Terminal damping of a solitary wave due to radiation in rotational systems
,”
Stud. Appl. Math.
101
,
197
210
(
1998
).
44.
O. A.
Gilman
,
R.
Grimshaw
, and
Yu. A.
Stepanyants
, “
Dynamics of internal solitary waves in a rotating fluid
,”
Dyn. Atmos. Oceans
23
,
403
411
(
1996
) (special issue. Stratified flows, Pt. A).
45.
V. O.
Vakhnenko
, “
High-frequency soliton-like waves in a relaxing medium
,”
J. Math. Phys.
40
,
2011
2020
(
1999
).
46.
Y.
Stepanyants
, “
On stationary solutions of the reduced Ostrovsky equation: periodic waves, compactons and compound solitons
,”
Chaos, Solitons Fractals
28
,
193
204
(
2006
).
47.
A. I.
Leonov
, “
The effect of Earth rotation on the propagation of weak nonlinear surface and internal long oceanic waves
,”
Ann. N.Y. Acad. Sci.
373
,
150
159
(
1981
).
48.
V. M.
Galkin
and
Yu. A.
Stepanyants
, “
On the existence of stationary solitary waves in a rotating fluid
,”
Prikl. Mat. Mekh.
55
,
1051
1055
(
1991
) (in Russian)
V. M.
Galkin
and
Yu. A.
Stepanyants
,[English translation:
J. Appl. Math. Mech.
55
,
939
943
(
1991
)].
49.
M. A.
Obregon
and
Yu. A.
Stepanyants
, “
Oblique magneto-acoustic solitons in a rotating plasma
,”
Phys. Lett. A
249
,
315
323
(
1998
).
50.
O. A.
Gilman
,
R.
Grimshaw
, and
Yu. A.
Stepanyants
, “
Approximate analytical and numerical solutions of the stationary Ostrovsky equation
,”
Stud. Appl. Math.
95
,
115
126
(
1995
).
51.
T.
Gerkema
, “
A unified model for the generation and fission of internal tides in a rotating ocean
,”
J. Mar. Res.
54
,
421
450
(
1996
).
52.
R.
Plougonven
and
V.
Zeitlin
, “
On periodic inertia-gravity waves of finite amplitude propagating without change of form at sharp density-gradient interfaces in the rotating fluid
,”
Phys. Lett. A
314
,
140
149
(
2003
).
53.
Yu. A.
Stepanyants
, “
Experimental investigation of cylindrically diverging solitons in an electric lattice
,”
Wave Motion
3
,
335
341
(
1981
).
54.
A. A.
Dorfman
,
E. N.
Pelinovsky
, and
Yu. A.
Stepanyants
, “
Finite-amplitude cylindrical and spherical waves in weakly dispersive media
,”
Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki (PMTF)
N.2
,
78
85
(
1981
) (in Russian)
A. A.
Dorfman
,
E. N.
Pelinovsky
, and
Yu. A.
Stepanyants
[English translation:
Sov. Phys. J. Appl. Mech. Tech. Phys.
n.2
,
206
211
(
1982
)].
55.
C.
Ramirez
,
D.
Renouard
, and
Yu. A.
Stepanyants
, “
Propagation of cylindrical waves in a rotating fluid
,”
Fluid Dyn. Res.
30
,
169
196
(
2002
).
56.
S. V.
Iordansky
, “
Asymptotic behaviour of an axially symmetric diverging wave in a heavy liquid
,”
Dokl. Akad. Nauk SSSR
125
,
1211
1214
(in Russian) (
1959
)
S. V.
Iordansky
,[English translation:
Sov. Phys. Dokl.
125
,
6
9
(
1959
)].
57.
S.
Maxon
and
J.
Viecelli
, “
Cylindrical solitons
,”
Phys. Fluids
17
,
1614
1616
(
1974
).
58.
F.
Calogero
and
A.
Degasperis
, “
Solution by the spectral-transform method of a nonlinear evolution equation including as a special case the cylindrical KdV equation
,”
Lett. Nuovo Cimento
23
,
150
154
(
1978
).
59.
A.
Nakamura
and
H. H.
Chen
, “
Soliton solutions of the cylindrical KdV equation
,”
J. Phys. Soc. Jpn.
50
,
711
718
(
1981
).
60.
C. J.
Amick
and
R. E. L.
Turner
, “
A global theory of internal solitary waves in two-fluid system
,”
Trans. Am. Math. Soc.
298
,
431
484
(
1986
).
61.
R. E. L.
Turner
and
J.-M.
Vanden-Broeck
, “
Broadening of interfacial solitary waves
,”
Phys. Fluids
31
,
2486
2490
(
1988
).
62.
W. A. B.
Evans
and
M. J.
Ford
, “
An integral equation approach to internal (2-layer) solitary waves
,”
Phys. Fluids
8
,
2032
2047
(
1996
).
63.
J.
Grue
,
A.
Jensen
,
P.-O.
Rusås
, and
J. K.
Sveen
, “
Properties of large amplitude internal waves
,”
J. Fluid Mech.
380
,
257
278
(
1999
).
64.
V. I.
Vlasenko
and
K.
Hutter
, “
Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography
,”
J. Phys. Oceanogr.
32
,
1779
1793
(
2002
).
65.
V. I.
Vlasenko
and
K.
Hutter
, “
Transformation and disintegration of strongly nonlinear internal waves by topography in stratified lakes
,”
Ann. Geophys. (Germany)
20
,
2087
2013
(
2002
).
66.
K. G.
Lamb
, “
A numerical investigation of solitary internal waves with trapped cores formed via shoaling
,”
J. Fluid Mech.
451
,
109
144
(
2002
).
67.
K. G.
Lamb
, “
Shoaling solitary internal waves: on a criterion for the formation of waves with trapped cores
,”
J. Fluid Mech.
478
,
81
100
(
2003
).
68.
M.
Stastna
and
K. G.
Lamb
, “
Large fully nonlinear internal solitary waves: The effect of background current
,”
Phys. Fluids
14
,
2987
2999
(
2002
).
69.
G. B.
Whitham
, “
Variational methods and applications to water waves
,”
Proc. R. Soc. London, Ser. A
299
,
6
25
(
1967
).
70.
M.
Miyata
, “
An internal solitary wave of large amplitude
,”
La Mer
23
,
43
48
(
1985
).
71.
M.
Miyata
, “
Long internal waves of large amplitude
,” in
Nonlinear Water Waves
, edited by
K.
Horikawa
and
H.
Maruo
(
Springer-Verlag
, Berlin,
1988
), pp.
399
406
.
72.
M.
Miyata
, “
A note on broad narrow solitary waves
,”
IPRC Report
00-01, SOEST,
University of Hawaii
, Honolulu, 00-05,
2000
, p.
47
.
73.
H.
Michallet
and
E.
Barthélemy
, “
Experimental study of interfacial solitary waves
,”
J. Fluid Mech.
366
,
159
177
(
1998
).
74.
W.
Choi
and
R.
Camassa
, “
Fully nonlinear internal waves in a two-fluid system
,”
J. Fluid Mech.
386
,
1
36
(
1999
).
75.
L. A.
Ostrovsky
and
J.
Grue
, “
Evolution equations for strongly nonlinear internal waves
,”
Phys. Fluids
15
,
2934
2948
(
2003
).
76.
L. A.
Ostrovsky
, in
The 1998 WHOI/IOS/ONR Internal Solitary Wave Workshop: Contributed Papers
, edited by
T. F.
Duda
and
D. M.
Farmer
, Technical Report, WHOI 99-07,
1999
, pp.
224
229
.
77.
A. V.
Slunyaev
,
E. N.
Pelinovsky
,
O. E.
Poloukhina
, and
S. L.
Gavrilyuk
, “
The Gardner equation as the model for long internal waves
,” in
Topical Problems of Nonlinear Wave Physics
,
Proceedings of the International Symposium
, Inst. of Appl. Phys., RAS, Nizhny Novgorod,
2003
, pp.
368
369
.
78.
S. M.
Khasanov
, “
The propagation of Kelvin’s solitary waves in an absorbing medium
,”
Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana
25
,
307
311
,
1989
(in Russian)
S. M.
Khasanov
,[English translation:
Izv., Acad. Sci., USSR, Atmos. Oceanic Phys.
25
,
3
6
(
1989
)].
79.
G. H.
Keulegan
, “
Gradual damping of solitary waves
,”
J. Res. Natl. Bur. Stand.
40
,
480
487
(
1948
).
80.
N. V.
Gavrilov
, “
Internal solitary waves of large amplitude in a two-layer fluid
,”
Zh. Prikl. Mekh. i Tekhn. Fiziki (PMTF)
N.5
,
49
54
(
1986
) (in Russian)
N. V.
Gavrilov
,[English translation:
Sov. Phys. J. Appl. Mech. Tech. Phys.
n.5
(
1986
)].
81.
L. V.
Ovsyannikov
 et al.,
Nonlinear Problems of the Theory of Surface and Internal Waves
(
Nauka
, Novosibirsk,
1985
), in Russian.
82.
V. V.
Papko
(private communication).
83.
T.
Gerkema
and
J. T. F.
Zimmerman
, “
Generation of nonlinear internal tides and solitary waves
,”
J. Phys. Oceanogr.
25
,
1081
1094
(
1995
).
84.
A. P.
Stamp
and
M.
Jacka
, “
Deep-water internal solitary waves
,”
J. Fluid Mech.
305
,
347
371
(
1995
).
85.
D. I.
Pullin
and
R. H. J.
Grimshaw
, “
Large-amplitude solitary waves at the interface between two homogeneous fluids
,”
Phys. Fluids
31
,
3550
3559
(
1988
).
86.
K. K.
Tung
,
T. F.
Chan
, and
T.
Kubota
, “
Large amplitude internal wave of permanent form
,”
Stud. Appl. Math.
66
,
1
44
(
1982
).
87.
B.
Turkington
,
A.
Eydeland
, and
S.
Wang
, “
A computational model for solitary internal waves in a continuously stratified fluid
,”
Stud. Appl. Math.
85
,
93
104
(
1991
).
88.
J.
Grue
,
A.
Jensen
,
P.-O.
Rusås
, and
J. K.
Sveen
, “
Breaking and broadening of internal solitary waves
,”
J. Fluid Mech.
413
,
181
217
(
2000
).
89.
W. K.
Melville
and
K. R.
Helfrich
, “
Transcritical two-layer flow over topography
,”
J. Fluid Mech.
178
,
31
52
(
1987
).
90.
J.
Grue
,
A.
Fris
,
E.
Palm
, and
P. O.
Rusås
, “
A method for computing unsteady fully nonlinear interfacial waves
,”
J. Fluid Mech.
351
,
223
252
(
1997
).
91.
T.
Maxworthy
, “
A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge
,”
J. Geophys. Res.
84
,
338
346
(
1979
).
92.
J. K.
Sveen
,
Y.
Guo
,
P.
Davies
, and
J.
Grue
, “
On the breaking of internal waves at a ridge
,”
J. Fluid Mech.
469
,
161
188
(
2002
).
93.
J.
Grue
, “
Generation, propagation and breaking of internal solitons
,”
Chaos
this issue.
94.
R.
Grimshaw
Adjustment processes and radiating solitary waves in a regularised Ostrovsky equation
,”
Eur. J. Mech. B/Fluids
18
,
535
543
(
1999
).
95.
E. J.
Parkes
, “
Explicit solutions of the reduced Ostrovsky equation
” (in press).
You do not currently have access to this content.