Nonlinear internal solitary waves observed in laboratory experiments are discussed from the standpoint of their relation to different soliton theories, from the classical integrable models such as the Korteweg–de Vries, Gardner, Benjamin–Ono, and Joseph–Kubota–Ko–Dobbs equations and their modifications, through the nonintegrable models describing higher-order nonlinear effects, viscosity, rotation, and cylindrical spreading, to the strongly nonlinear models. First, these theoretical models are briefly described and, then, laboratory data and their comparison with the theory are presented.
REFERENCES
1.
B.
Franklin
, “Behavior of oil on water. Letter to John Pringle. Philadelphia, Dec. 1, 1762
,” in Experiments and Observations on Electricity
, London, 1769
, pp. 142
–144
.2.
M. J.
Ablowitz
and H.
Segur
, Solitons and the Inverse Scattering Transform
(SIAM
, Philadelphia, 1981
).3.
L. A.
Ostrovsky
, “Nonlinear internal waves in the ocean
,” in Nonlinear Waves
, Proceedings of IV Gorky School on Nonlinear Waves
, 1979
, pp. 292
–329
(in Russian).4.
R.
Grimshaw
, “Internal solitary waves
,” Chap. 1 in the book Environmental Stratified Flows
, edited by R.
Grimshaw
(Kluwer Academic
, New York, 2002
), pp. 1
–27
.5.
L. A.
Ostrovsky
, “Nonlinear internal waves in a rotating ocean
,” Okeanologia
18
, 181
–191
(1978
) (in Russian)6.
L. A.
Ostrovsky
and Yu. A.
Stepanyants
, “Do internal solitons exist in the ocean?
,” Rev. Geophys.
27
, 293
–310
(1989
).7.
J. R.
Apel
, L. A.
Ostrovsky
, Y. A.
Stepanyants
, and J. F.
Lynch
, “Internal solitons in the ocean
,” Technical Report
WHOI-05, 2005
.See also http://www.whoi.edu/science/
8.
L. R.
Walker
, “Interfacial solitary waves in a two-fluid medium
,” Phys. Fluids
16
, 1796
–1804
(1973
).9.
T.
Kakutani
and N.
Yamasaki
, “Solitary waves on a two-layer fluid
,” J. Phys. Soc. Jpn.
45
, 674
–679
(1978
).10.
C.
Leone
, H.
Segur
, and J. L.
Hammack
, “Viscous decay of long internal solitary waves
,” Phys. Fluids
25
, 942
–244
(1982
).11.
G. H.
Keulegan
, “Characteristics of internal solitary waves
,” J. Res. Natl. Bur. Stand.
51
, 133
–140
(1953
).12.
R.
Grimshaw
, E. N.
Pelinovsky
, and T. G.
Talipova
, “The modified Korteweg–de Vries equation in the theory of large-amplitude internal waves
,” Nonlinear Processes Geophys.
4
, 237
–250
(1997
).13.
T. G.
Talipova
, E. N.
Pelinovsky
, K.
Lamb
, R.
Grimshaw
, and P.
Holloway
, “Cubic nonlinearity effects in the propagation of intense internal waves
,” Dokl. Akad. Nauk SSSR
364
, 824
–827
(1999
) (in Russian)T. G.
Talipova
, E. N.
Pelinovsky
, K.
Lamb
,R.
Grimshaw
,and P.
Holloway
,[English translation: Dokl. Earth Sci.
365
, 241
–244
(1999
)].14.
M.
Funacoshi
and M.
Oikawa
, “Long internal waves of large amplitude in a two-layer fluid
,” J. Phys. Soc. Jpn.
55
, 128
–144
(1986
).15.
R.
Grimshaw
, E.
Pelinovsky
, Y.
Stepanyants
, and T.
Talipova
, “Modeling internal solitary waves on the Australian North West Shelf
,” Mar. Freshwater Res.
(to be published). See also preprint 05–05, Loughborough University
, Department of Mathematical Sciences, 15
pages; website: http://www.lboro.ac.uk/departments/ma/preprints/papers05/05–05abs.html16.
R. E.
Davis
and A.
Acrivos
, “Solitary internal waves in deep water
,” J. Fluid Mech.
29
, 593
–607
(1967
).17.
T. W.
Kao
and H. P.
Pao
, “Wake collapse in the thermocline and internal solitary waves
,” J. Fluid Mech.
97
, 115
–127
(1979
).18.
T. W.
Kao
, F.-Sh.
Pan
, and D.
Renouard
, “Internal solitons on the pycnocline: Generation, propagation, and shoaling and breaking over a slope
,” J. Fluid Mech.
159
, 19
–53
(1985
).19.
J.
Gan
and R. G.
Ingram
, “Internal hydraulics, solitons and associated mixing in a stratified Sound
,” J. Geophys. Res.
97
, 9669
–9688
(1992
).20.
[English translation:
Nonlinear Waves in Dispersive Media
(Pergamon
, Oxford, 1973
)].21.
C.
Koop
and G.
Butler
, “An investigation of internal solitary waves in a two-fluid system
,” J. Fluid Mech.
112
, 225
–251
(1981
).22.
H.
Segur
and J. L.
Hammack
, “Soliton models of long internal waves
,” J. Fluid Mech.
118
, 285
–304
(1982
).23.
V. I.
Bukreev
and N. V.
Gavrilov
, “Experimental investigation of solitary internal waves in a two-layer fluid
,” Zh. Prikl. Mekh. Tekhn. Fiziki (PMTF)
N.5
, 51
–56
(1983
) (in Russian)V. I.
Bukreev
and N. V.
Gavrilov
,[English translation: Sov. Phys. J. Appl. Mech. Tech. Phys.
n.5
(1983
)].24.
K. A.
Gorshkov
and V. V.
Papko
, “Non-adiabatic stage of damping of solitons and the intermediate asymptotics
,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.
20
, 360
–365
(1977
) (in Russian)K. A.
Gorshkov
and V. V.
Papko
,[English translation: Radiophys. Quantum Electron.
20
, (1977
)].25.
Ch.-Y.
Lee
and R. C.
Beardsley
, “The generation of long nonlinear internal waves in a weakly stratified shear flows
,” J. Geophys. Res.
79
, 453
–457
(1974
).26.
J.
Gear
and R.
Grimshaw
, “A second-order theory for solitary waves in shallow fluids
,” Phys. Fluids
26
, 14
–29
(1983
).27.
A. K.
Liu
, J. R.
Holbrook
, and J. R.
Apel
, “Nonlinear internal wave evolution in the Sulu Sea
,” J. Phys. Oceanogr.
15
, 1613
–1624
(1985
).28.
L.
Ostrovsky
and E.
Pelinovsky
, “Nonlinear evolution of tsunami waves
,” Bull. Roy. Soc. New Zealand
15
, 203
–211
(1976
).29.
A. R.
Osborne
, “The inverse scattering transform: tools for the nonlinear Fourier analysis and filtering of ocean surface waves
,” Chaos, Solitons Fractals
5
, 2623
–2637
(1995
).30.
J.-G.
Caputo
and Y. A.
Stepanyants
, “Bore Formation, Evolution and Disintegration into Solitons in Shallow Inhomogeneous Channels
,” Nonlinear Processes Geophys.
10
, 407
–424
(2003
).31.
R.
Grimshaw
, “The solitary wave in water of variable depth
,” J. Fluid Mech.
42
, 639
–656
(1970
);R.
Grimshaw
,“The solitary wave in water of variable depth. Part 2
,” J. Fluid Mech.
46
, 611
–622
(1971
).32.
T.
Kakutani
and K.
Matsuuchi
, “Effect of viscosity on long gravity waves
,” J. Phys. Soc. Jpn.
39
, 237
–246
(1975
).33.
J. W.
Miles
, “Damping of weakly nonlinear shallow-water waves
,” J. Fluid Mech.
76
, 251
–257
(1976
).34.
K. P.
Das
and J.
Chakrabarti
, “The Korteweg–de Vries equation modified by viscosity for waves in a two-layer fluid in a channel of arbitrary cross section
,” Phys. Fluids
29
, 661
–666
(1986
).35.
K. R.
Helfrich
, “Internal solitary wave breaking and run-up on a uniform slope
,” J. Fluid Mech.
243
, 133
–154
(1992
).36.
K. A.
Gorshkov
and L. A.
Ostrovsky
, “Interaction of solitons in non-integrable systems: Direct perturbation method and applications
,” Physica D
3
, 248
–438
(1981
).37.
R.
Grimshaw
, “Evolution equations for weakly nonlinear long internal waves in a rotating fluid
,” Stud. Appl. Math.
73
, 1
–33
(1985
).38.
D.
Renouard
and J.-P.
Germain
, “Experimental study of long nonlinear internal waves in rotating fluid
,” Ann. Geophys. (Germany)
12
, 254
–264
(1994
).39.
L. A.
Ostrovsky
and Yu. A.
Stepanyants
, “Nonlinear surface and internal waves in rotating fluids
,” in Nonlinear Waves 3
, Proceedings of the 1989 Gorky School on Nonlinear Waves
, edited by A. V.
Gaponov-Grekhov
, M. I.
Rabinovich
, and J.
Engelbrecht
(Springer-Verlag
, Berlin, Heidelberg, 1990
), pp. 106
–128
.[In Russian: in
Nonlinear Waves. Physics and Astrophysics
(Nauka
, Moscow, 1993
), pp. 132
–153
.]40.
R. H. J.
Grimshaw
, L. A.
Ostrovsky
, V. I.
Shrira
, and Y. A.
Stepanyants
, “Long nonlinear surface and internal gravity waves in a rotating ocean
,” Surv. Geophys.
19
, 289
–338
(1998
).41.
A. L.
New
and M.
Esteban
, “A new Korteweg–de Vries-type theory for internal solitary waves in a rotating continuously-stratified ocean
,” in Near-Surface Ocean Layer. V. 1. Physical Processes and Remote Sensing
, Collection of Scientific Papers, edited by E. N.
Pelinovsky
and V. I.
Talanov
, Nizhny Novgorod
, IAP RAS, 1999
, pp. 173
–203
.42.
Y.
Liu
and V.
Varlamov
, “Stability of solitary waves and weak rotation limit for the Ostrovsky equation
,” J. Diff. Eqns.
203
, 159
–183
(2004
).43.
R. H. J.
Grimshaw
, J.-M.
He
, and L. A.
Ostrovsky
, “Terminal damping of a solitary wave due to radiation in rotational systems
,” Stud. Appl. Math.
101
, 197
–210
(1998
).44.
O. A.
Gilman
, R.
Grimshaw
, and Yu. A.
Stepanyants
, “Dynamics of internal solitary waves in a rotating fluid
,” Dyn. Atmos. Oceans
23
, 403
–411
(1996
) (special issue. Stratified flows, Pt. A).45.
V. O.
Vakhnenko
, “High-frequency soliton-like waves in a relaxing medium
,” J. Math. Phys.
40
, 2011
–2020
(1999
).46.
Y.
Stepanyants
, “On stationary solutions of the reduced Ostrovsky equation: periodic waves, compactons and compound solitons
,” Chaos, Solitons Fractals
28
, 193
–204
(2006
).47.
A. I.
Leonov
, “The effect of Earth rotation on the propagation of weak nonlinear surface and internal long oceanic waves
,” Ann. N.Y. Acad. Sci.
373
, 150
–159
(1981
).48.
V. M.
Galkin
and Yu. A.
Stepanyants
, “On the existence of stationary solitary waves in a rotating fluid
,” Prikl. Mat. Mekh.
55
, 1051
–1055
(1991
) (in Russian)V. M.
Galkin
and Yu. A.
Stepanyants
,[English translation: J. Appl. Math. Mech.
55
, 939
–943
(1991
)].49.
M. A.
Obregon
and Yu. A.
Stepanyants
, “Oblique magneto-acoustic solitons in a rotating plasma
,” Phys. Lett. A
249
, 315
–323
(1998
).50.
O. A.
Gilman
, R.
Grimshaw
, and Yu. A.
Stepanyants
, “Approximate analytical and numerical solutions of the stationary Ostrovsky equation
,” Stud. Appl. Math.
95
, 115
–126
(1995
).51.
T.
Gerkema
, “A unified model for the generation and fission of internal tides in a rotating ocean
,” J. Mar. Res.
54
, 421
–450
(1996
).52.
R.
Plougonven
and V.
Zeitlin
, “On periodic inertia-gravity waves of finite amplitude propagating without change of form at sharp density-gradient interfaces in the rotating fluid
,” Phys. Lett. A
314
, 140
–149
(2003
).53.
Yu. A.
Stepanyants
, “Experimental investigation of cylindrically diverging solitons in an electric lattice
,” Wave Motion
3
, 335
–341
(1981
).54.
A. A.
Dorfman
, E. N.
Pelinovsky
, and Yu. A.
Stepanyants
, “Finite-amplitude cylindrical and spherical waves in weakly dispersive media
,” Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki (PMTF)
N.2
, 78
–85
(1981
) (in Russian)A. A.
Dorfman
, E. N.
Pelinovsky
, and Yu. A.
Stepanyants
[English translation: Sov. Phys. J. Appl. Mech. Tech. Phys.
n.2
, 206
–211
(1982
)].55.
C.
Ramirez
, D.
Renouard
, and Yu. A.
Stepanyants
, “Propagation of cylindrical waves in a rotating fluid
,” Fluid Dyn. Res.
30
, 169
–196
(2002
).56.
S. V.
Iordansky
, “Asymptotic behaviour of an axially symmetric diverging wave in a heavy liquid
,” Dokl. Akad. Nauk SSSR
125
, 1211
–1214
(in Russian) (1959
)57.
S.
Maxon
and J.
Viecelli
, “Cylindrical solitons
,” Phys. Fluids
17
, 1614
–1616
(1974
).58.
F.
Calogero
and A.
Degasperis
, “Solution by the spectral-transform method of a nonlinear evolution equation including as a special case the cylindrical KdV equation
,” Lett. Nuovo Cimento
23
, 150
–154
(1978
).59.
A.
Nakamura
and H. H.
Chen
, “Soliton solutions of the cylindrical KdV equation
,” J. Phys. Soc. Jpn.
50
, 711
–718
(1981
).60.
C. J.
Amick
and R. E. L.
Turner
, “A global theory of internal solitary waves in two-fluid system
,” Trans. Am. Math. Soc.
298
, 431
–484
(1986
).61.
R. E. L.
Turner
and J.-M.
Vanden-Broeck
, “Broadening of interfacial solitary waves
,” Phys. Fluids
31
, 2486
–2490
(1988
).62.
W. A. B.
Evans
and M. J.
Ford
, “An integral equation approach to internal (2-layer) solitary waves
,” Phys. Fluids
8
, 2032
–2047
(1996
).63.
J.
Grue
, A.
Jensen
, P.-O.
Rusås
, and J. K.
Sveen
, “Properties of large amplitude internal waves
,” J. Fluid Mech.
380
, 257
–278
(1999
).64.
V. I.
Vlasenko
and K.
Hutter
, “Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography
,” J. Phys. Oceanogr.
32
, 1779
–1793
(2002
).65.
V. I.
Vlasenko
and K.
Hutter
, “Transformation and disintegration of strongly nonlinear internal waves by topography in stratified lakes
,” Ann. Geophys. (Germany)
20
, 2087
–2013
(2002
).66.
K. G.
Lamb
, “A numerical investigation of solitary internal waves with trapped cores formed via shoaling
,” J. Fluid Mech.
451
, 109
–144
(2002
).67.
K. G.
Lamb
, “Shoaling solitary internal waves: on a criterion for the formation of waves with trapped cores
,” J. Fluid Mech.
478
, 81
–100
(2003
).68.
M.
Stastna
and K. G.
Lamb
, “Large fully nonlinear internal solitary waves: The effect of background current
,” Phys. Fluids
14
, 2987
–2999
(2002
).69.
G. B.
Whitham
, “Variational methods and applications to water waves
,” Proc. R. Soc. London, Ser. A
299
, 6
–25
(1967
).70.
71.
M.
Miyata
, “Long internal waves of large amplitude
,” in Nonlinear Water Waves
, edited by K.
Horikawa
and H.
Maruo
(Springer-Verlag
, Berlin, 1988
), pp. 399
–406
.72.
M.
Miyata
, “A note on broad narrow solitary waves
,” IPRC Report
00-01, SOEST, University of Hawaii
, Honolulu, 00-05, 2000
, p. 47
.73.
H.
Michallet
and E.
Barthélemy
, “Experimental study of interfacial solitary waves
,” J. Fluid Mech.
366
, 159
–177
(1998
).74.
W.
Choi
and R.
Camassa
, “Fully nonlinear internal waves in a two-fluid system
,” J. Fluid Mech.
386
, 1
–36
(1999
).75.
L. A.
Ostrovsky
and J.
Grue
, “Evolution equations for strongly nonlinear internal waves
,” Phys. Fluids
15
, 2934
–2948
(2003
).76.
L. A.
Ostrovsky
, in The 1998 WHOI/IOS/ONR Internal Solitary Wave Workshop: Contributed Papers
, edited by T. F.
Duda
and D. M.
Farmer
, Technical Report, WHOI 99-07, 1999
, pp. 224
–229
.77.
A. V.
Slunyaev
, E. N.
Pelinovsky
, O. E.
Poloukhina
, and S. L.
Gavrilyuk
, “The Gardner equation as the model for long internal waves
,” in Topical Problems of Nonlinear Wave Physics
, Proceedings of the International Symposium
, Inst. of Appl. Phys., RAS, Nizhny Novgorod, 2003
, pp. 368
–369
.78.
S. M.
Khasanov
, “The propagation of Kelvin’s solitary waves in an absorbing medium
,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana
25
, 307
–311
, 1989
(in Russian)S. M.
Khasanov
,[English translation: Izv., Acad. Sci., USSR, Atmos. Oceanic Phys.
25
, 3
–6
(1989
)].79.
G. H.
Keulegan
, “Gradual damping of solitary waves
,” J. Res. Natl. Bur. Stand.
40
, 480
–487
(1948
).80.
N. V.
Gavrilov
, “Internal solitary waves of large amplitude in a two-layer fluid
,” Zh. Prikl. Mekh. i Tekhn. Fiziki (PMTF)
N.5
, 49
–54
(1986
) (in Russian)N. V.
Gavrilov
,[English translation: Sov. Phys. J. Appl. Mech. Tech. Phys.
n.5
(1986
)].81.
L. V.
Ovsyannikov
et al., Nonlinear Problems of the Theory of Surface and Internal Waves
(Nauka
, Novosibirsk, 1985
), in Russian.82.
V. V.
Papko
(private communication).83.
T.
Gerkema
and J. T. F.
Zimmerman
, “Generation of nonlinear internal tides and solitary waves
,” J. Phys. Oceanogr.
25
, 1081
–1094
(1995
).84.
A. P.
Stamp
and M.
Jacka
, “Deep-water internal solitary waves
,” J. Fluid Mech.
305
, 347
–371
(1995
).85.
D. I.
Pullin
and R. H. J.
Grimshaw
, “Large-amplitude solitary waves at the interface between two homogeneous fluids
,” Phys. Fluids
31
, 3550
–3559
(1988
).86.
K. K.
Tung
, T. F.
Chan
, and T.
Kubota
, “Large amplitude internal wave of permanent form
,” Stud. Appl. Math.
66
, 1
–44
(1982
).87.
B.
Turkington
, A.
Eydeland
, and S.
Wang
, “A computational model for solitary internal waves in a continuously stratified fluid
,” Stud. Appl. Math.
85
, 93
–104
(1991
).88.
J.
Grue
, A.
Jensen
, P.-O.
Rusås
, and J. K.
Sveen
, “Breaking and broadening of internal solitary waves
,” J. Fluid Mech.
413
, 181
–217
(2000
).89.
W. K.
Melville
and K. R.
Helfrich
, “Transcritical two-layer flow over topography
,” J. Fluid Mech.
178
, 31
–52
(1987
).90.
J.
Grue
, A.
Fris
, E.
Palm
, and P. O.
Rusås
, “A method for computing unsteady fully nonlinear interfacial waves
,” J. Fluid Mech.
351
, 223
–252
(1997
).91.
T.
Maxworthy
, “A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge
,” J. Geophys. Res.
84
, 338
–346
(1979
).92.
J. K.
Sveen
, Y.
Guo
, P.
Davies
, and J.
Grue
, “On the breaking of internal waves at a ridge
,” J. Fluid Mech.
469
, 161
–188
(2002
).93.
J.
Grue
, “Generation, propagation and breaking of internal solitons
,” Chaos
this issue.94.
R.
Grimshaw
“Adjustment processes and radiating solitary waves in a regularised Ostrovsky equation
,” Eur. J. Mech. B/Fluids
18
, 535
–543
(1999
).95.
E. J.
Parkes
, “Explicit solutions of the reduced Ostrovsky equation
” (in press).© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.