The problem of long-wave scattering by piecewise-constant periodic topography is studied both for a linear solitary-like wave pulse, and for a weakly nonlinear solitary wave [Korteweg–de Vries (KdV) soliton]. If the characteristic length of the topographic irregularities is larger than the pulse length, the solution of the scattering problem is obtained analytically for a leading wave in the framework of linear shallow-water theory. The wave decrement in the case of the small height of the topographic irregularities is proportional to δ2, where δ is the relative height of the topographic obstacles. An analytical approximate solution is also obtained for the weakly nonlinear problem when the length of the irregularities is larger than the characteristic nonlinear length scale. In this case, the Korteweg–de Vries equation is solved for each piece of constant depth by using the inverse scattering technique; the solutions are matched at each step by using linear shallow-water theory. The weakly nonlinear solitary wave decays more significantly than the linear solitary pulse. Solitary wave dynamics above a random seabed is also discussed, and the results obtained for random topography (including experimental data) are in reasonable agreement with the calculations for piecewise topography.

1.
Agnon
,
Y.
, and
Pelinovsky
,
E.
, “
Accurate refraction-diffraction equations for water waves on a variable-depth rough bottom
,”
J. Fluid Mech.
449
,
301
311
(
2001
).
2.
Agnon
,
Y.
,
Madsen
,
P. A.
, and
Schaffer
,
H. A.
, “
A new approach to high order Boussinesq models
,”
J. Fluid Mech.
399
,
319
333
(
1999
).
3.
Ardhuin
,
F.
, and
Herbers
,
T. H. C.
, “
Bragg scattering of random surface gravity waves by irregular seabed topography
,”
J. Fluid Mech.
451
,
1
33
(
2002
).
4.
Bartholomeusz
,
L. F.
, “
The reflection of long waves at a step
,”
Proc. Cambridge Philos. Soc.
54
,
106
(
1958
).
5.
Belzons
,
M.
,
Guazzelli
,
E.
, and
Parodi
,
O.
, “
Gravity waves on a rough bottom: Experimental evidence of one-dimensional localization
,”
J. Fluid Mech.
186
,
539
558
(
1988
).
6.
Benilov
,
E.
, “
On the surface waves in a shallow channel with an uneven bottom
,”
Stud. Appl. Math.
87
,
1
14
(
1992
).
7.
Benilov
,
E.
, and
Pelinovsky
,
E.
, “
Theory of nonlinear wave propagation in nondispersive media with fluctuating parameters
,”
Sov. Phys. JETP
67
,
98
103
(
1988
).
8.
Devillard
,
P.
,
Dunlop
,
F.
, and
Souillard
,
B.
, “
Localization of gravity waves on a channel with a random bottom
,”
J. Fluid Mech.
186
,
521
538
(
1988
).
9.
Drazin
,
P. G.
, and
Johnson
,
S. R.
,
Solitons: An Introduction
(
Cambridge University Press
, Cambridge,
1993
).
10.
Fouque
,
J.-P.
,
Garnier
,
J.
,
Grajales
,
J. C. M.
, and
Nachbin
,
A.
, “
Time reversing solitary waves
,”
Phys. Rev. Lett.
92
,
094502
(
2004
).
11.
Garnier
,
J.
, “
Long-time dynamics of Korteweg–de Vries solitons driven by random perturbations
,”
J. Stat. Phys.
105
,
789
833
(
2001
).
12.
Gobbi
,
M. F.
,
Kirby
,
J. T.
, and
Wei
,
G.
, “
A fully nonlinear Boussinesq model for surface waves. Extension to 0(kh)4
,”
J. Fluid Mech.
405
,
181
210
(
2000
).
13.
Gurevich
,
B.
,
Jeffrey
,
A.
, and
Pelinovsky
,
E.
, “
A method for obtaining evolution equations for nonlinear waves in random medium
,”
Wave Motion
17
,
287
295
(
1993
).
14.
Hamilton
,
J.
, “
Differential equations for long-period gravity waves on a fluid of rapidly varying depth
,”
J. Fluid Mech.
83
,
289
310
(
1977
).
15.
Hara
,
T.
, and
Mei
,
C. C.
, “
Bragg scattering of surface waves by periodic bars: Theory and experiment
,”
J. Fluid Mech.
178
,
221
241
(
1987
).
16.
Kajiura
,
K.
, “
The leading wave of a tsunami
,”
Bull. Earthquake Res. Inst., Univ. Tokyo
41
,
535
571
(
1963
).
17.
Kawahara
,
T.
, “
Effect of random inhomogeneities on nonlinear propagation of water waves
,”
J. Phys. Soc. Jpn.
41
,
1402
1409
(
1976
).
18.
Konotop
,
V. V.
, and
Vazquez
,
L.
,
Nonlinear Random Waves
(
World Scientific
, Singapore,
1994
).
19.
Lamb
,
H.
,
Hydrodynamics
(
Dover
, New York,
1932
).
20.
Liu
,
Y.
, and
Yue
,
D. K. P.
, “
On generalized Bragg scattering of surface waves by bottom ripples
,”
J. Fluid Mech.
356
,
297
326
(
1998
).
21.
Madsen
,
P. A.
,
Bingham
,
H. B.
, and
Liu
,
H.
, “
A new Boussinesq method for fully nonlinear waves from shallow to deep water
,”
J. Fluid Mech.
462
,
1
30
(
2002
).
22.
Mei
,
C. C.
, and
Li
,
Y.
, “
Evolution of solitons over a randomly rough seabed
,”
Phys. Rev. E
70
,
016302
(
2004
).
23.
Mirchina
,
N. R.
, and
Pelinovsky
,
E. N.
, “
Nonlinear transformation of long waves at a bottom step
,”
J. Korean Soc. Coastal and Ocean Eng.
4
,
161
167
(
1992
).
24.
Nachbin
,
A.
, “
The localization length of randomly scattered water waves
,”
J. Fluid Mech.
296
,
353
372
(
1995
).
25.
Nachbin
,
A.
, “
A terrain-following Boussinesq system
,”
SIAM J. Appl. Math.
63
,
905
922
(
2003
).
26.
Nachbin
,
A.
, and
Papanicolaou
,
G. G.
, “
Water waves in shallow channels of rapidly varying depth
,”
J. Fluid Mech.
241
,
311
332
(
1992
).
27.
Pelinovsky
,
E. N.
,
Hydrodynamics of Tsunami Waves
(
Applied Physics Institute Press
, Nizhny Novgorod, Russia,
1996
).
28.
Robinson
,
E. A.
, “
Spectral approach to geophysical inversion by Lorentz, Fourier, and Radon transforms
,”
Proc. IEEE
70
,
1039
1054
(
1982
).
29.
Rosales
,
R. R.
, and
Papanicolaou
,
G. C.
Gravity waves in a channel with a rough bottom
,”
Stud. Appl. Math.
68
,
89
102
(
1982
).
30.
Stepaniants
,
A.
, “
Diffusion and localization of surface gravity waves over irregular bathymetry
,”
Phys. Rev. E
63
,
031202
(
2001
).
31.
Sugimoto
,
N.
,
Nakajima
,
N.
, and
Kakutani
,
T.
, “
Edge-layer theory for shallow-water waves over a step—reflection and transmission of a soliton
,”
J. Phys. Soc. Jpn.
56
,
1717
1730
(
1987
).
32.
Tadepalli
,
S.
, and
Synolakis
,
C. E.
, “
Model for the leading waves of tsunamis
,”
Phys. Rev. Lett.
77
,
2141
2144
(
1996
).
33.
Wei
,
G.
,
Kirby
,
J. T.
,
Grilli
,
S. T.
, and
Subramanya
,
R.
, “
A fully nonlinear Boussinesq model for surface waves. I Highly nonlinear unsteady waves
,”
J. Fluid Mech.
294
,
71
92
(
1995
).
34.
Zabusky
,
N. J.
, and
Galvin
,
C. J.
, “
Shallow-water waves, the Korteweg—de Vries equation and solitons
,”
J. Fluid Mech.
47
,
811
824
(
1971
).
You do not currently have access to this content.