The evolution of lump solutions for the Zakharov-Kuznetsov equation and the surface electromigration equation, which describes mass transport along the surface of nanoconductors, is studied. Approximate equations are developed for these equations, these approximate equations including the important effect of the dispersive radiation shed by the lumps as they evolve. The approximate equations show that lumplike initial conditions evolve into lump soliton solutions for both the Zakharov-Kuznetsov equation and the surface electromigration equations. Solutions of the approximate equations, within their range of applicability, are found to be in good agreement with full numerical solutions of the governing equations. The asymptotic and numerical results predict that localized disturbances will always evolve into nanosolitons. Finally, it is found that dispersive radiation plays a more dominant role in the evolution of lumps for the electromigration equations than for the Zakharov-Kuznetsov equation.

1.
Z.
Zakharov
and
V. E.
Kuznetsov
, “
Three dimensional solitons
,”
Sov. Phys. JETP
39
,
285
286
(
1974
).
2.
M. A.
Allen
and
G.
Rowlands
, “
Determination of the growth rate of the linearized Zkakarov Kuznetsov equation
,”
J. Plasma Phys.
50
,
413
424
(
1993
).
3.
E. W.
Laedke
and
K. H.
Spatschek
, “
Limitations of two dimensional model equations for ion acoustic waves
,”
Phys. Rev. Lett.
47
,
719
–722 (
1995
).
4.
E. W.
Laedke
and
K. H.
Spatschek
, “
Growth rates of bending KdV solitons
,”
J. Plasma Phys.
28
,
469
484
(
1982
).
5.
E.
Infeld
and
P.
Frycz
, “
Self-focusing of nonlinear ion acoustic waves and solitons in magetized plasmas Part 2. Numerical simulations, two soliton collisions
,”
J. Plasma Phys.
37
,
97
106
(
1987
).
6.
R. M.
Bradley
, “
Electromigration induced propagation on metal surfaces
,”
Phys. Rev. E
60
,
3736
–3740 (
1999
).
7.
R. M.
Bradley
, “
Transverse instability of solitons propagating on current carrying metal thin films
,”
Physica D
158
,
216
232
(
2001
).
8.
R.
Sipcic
and
D.
Benney
, “
Lump interactions and collapse in the modified Zakharov Kuznetsov equation
,”
Stud. Appl. Math.
105
,
385
403
(
2000
).
9.
N. F.
Smyth
and
A. L.
Worthy
, “
Solitary wave evolution for mKdV equations
,”
Wave Motion
21
,
263
275
(
1995
).
10.
A. A.
Minzoni
and
N. F.
Smyth
, “
Evolution of lump solutions for the KP equation
,”
Wave Motion
24
,
291
305
(
1996
).
11.
W. L.
Kath
and
N. F.
Smyth
, “
Soliton evolution and radiation loss for the Korteweg-de Vries equation
,”
Phys. Rev. E
51
,
661
–670 (
1995
).
12.
G. B.
Whitham
,
Linear and Nonlinear Waves
(
Wiley
, New York,
1974
).
13.
E. A.
Kuznetsov
, “
Soliton stability in equations of the KdV type
,”
Phys. Lett.
101A
,
314
316
(
1984
).
14.
E. A.
Kuznetsov
,
A. M.
Rubenchik
, and
V. E.
Zakharov
, “
Soliton stability in plasmas and hydrodynamics
,”
Phys. Rep.
142
,
103
165
(
1986
).
15.
E. A.
Kuznetsov
and
V. E.
Zakharov
,
Nonlinear Coherent Phenomena in Continuous Media, Lecture Notes in Physics, Vol. 542, Nonlinear Science at the Dawn of the 21st Century
, edited by
P. L.
Christiansen
,
M. P.
Soerensen
, and
A. C.
Scott
(
Springer–Verlag
, Berlin,
2000
), pp.
3
45
.
16.
G.
Cruz-Pacheco
,
G.
Flores-Reyna
,
M. C.
Jorge
,
A. A.
Minzoni
, and
N. F.
Smyth
, “
Approximate evolution of lump initial conditions for the Benjamin-Ono equation
,”
Wave Motion
28
,
195
202
(
1998
).
17.
B.
Fornberg
and
G. B.
Whitham
, “
A numerical and theoretical study of certain nonlinear wave phenomena
,”
Philos. Trans. R. Soc. London, Ser. A
289
,
373
403
(
1978
).
18.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran. The Art of Scientific Computing
(
Cambridge U.P.
, Cambridge,
1992
).
You do not currently have access to this content.