We present a way to deal with dispersion-dominated “shock-type” transition in the absence of completely integrable structure for the systems that one may characterize as strictly hyperbolic regularized by a small amount of dispersion. The analysis is performed by assuming that the dispersive shock transition between two different constant states can be modeled by an expansion fan solution of the associated modulation (Whitham) system for the short-wavelength nonlinear oscillations in the transition region (the so-called Gurevich-Pitaevskii problem). We consider both single-wave and bidirectional systems. The main mathematical assumption is that of hyperbolicity of the Whitham system for the solutions of our interest. By using general properties of the Whitham averaging for a certain class of nonlinear dispersive systems and specific features of the Cauchy data prescription on characteristics we derive a set of transition conditions for the dispersive shock, actually bypassing full integration of the modulation equations. Along with the Korteweg-de Vries (KdV) and modified KdV (mKdV) equations as model examples, we consider a nonintegrable system describing fully nonlinear ion-acoustic waves in collisionless plasma. In all cases our transition conditions are in complete agreement with previous analytical and numerical results.

1.
P. D.
Lax
,
Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves
,
Conference Board of the Mathematical Sciences, Regional Conference Series in Applied Mathematics
(
SIAM
, Philadelphia,
1973
).
2.
T. B.
Benjamin
and
M. J.
Lighthill
, “
On cnoidal waves and bores
,”
Proc. R. Soc. London, Ser. A
224
,
448
460
(
1954
).
3.
R. Z.
Sagdeev
, “
Collective processes and shock waves in rarified plasma
,” in
Problems of Plasma Theory
, edited by
M. A.
Leontovich
(
Atomizdat
, Moscow,
1964
), Vol.
5
.
4.
R. S.
Johnson
, “
A non-linear equation incorporating damping and dispersion
,”
J. Fluid Mech.
42
,
49
60
(
1970
).
5.
A. V.
Gurevich
, and
L. P.
Pitaevskii
, “
Averaged description of waves in the Korteweg-de Vries-Burgers equation
,”
Sov. Phys. JETP
66
,
490
495
(
1987
).
6.
V. V.
Avilov
,
I. M.
Krichever
, and
S. P.
Novikov
, “
Evolution of Whitham zone in the theory of Korteweg-de Vries
,”
Sov. Phys. Dokl.
32
,
564
566
(
1987
).
7.
G. A.
El
,
R. H.J.
Grimshaw
, and
A. M.
Kamchatnov
, “
Analytic model for a weakly dissipative shallow-water undular bore
,”
Chaos
(to be published).
8.
A.
Porter
, and
N. F.
Smyth
, “
Modelling the morning glory in the Gulf of Carpentaria
,”
J. Fluid Mech.
454
,
1
20
(
2002
).
9.
Yu.
Kodama
, “
The Whitham equations for optical communications: Mathematical theory of NRZ
,”
SIAM J. Appl. Math.
59
,
2162
2192
(
1999
).
10.
T. P.
Simula
,
P.
Engels
,
I.
Coddington
,
V.
Schweikhard
,
E. A.
Cornell
, and
R. J.
Ballagh
, “
Observations of sound propagation in rapidly rotating Bose-Einstein condensates
,”
Phys. Rev. Lett.
94
,
080404
(
2005
).
11.
P. D.
Lax
, and
C. D.
Levermore
, “
The small dispersion limit of the Korteweg–de Vries equation I
,”
Commun. Pure Appl. Math.
36
,
253
290
571
593
809
829
. (
1983
);
P. D.
Lax
, and
C. D.
Levermore
,
Commun. Pure Appl. Math.
II
36
,
571
593
(
1983
);
P. D.
Lax
, and
C. D.
Levermore
,
Commun. Pure Appl. Math.
III
36
,
809
829
(
1983
).
12.
S.
Venakides
, “
The zero dispersion limit of the Korteweg–de Vries equation for initial potentials with nontrivial reflection coefficient
,”
Commun. Pure Appl. Math.
38
,
125
155
(
1985
).
13.
P. D.
Lax
,
C. D.
Levermore
, and
S.
Venakides
, “
The generation and propagation of oscillations in dispersive initial value problems and their limiting behavior
,” in
Important Developments in Soliton Theory
, edited by
A. S.
Focas
and
V. E.
Zakharov
(
Springer
, Berlin,
1994
), pp.
205
241
.
14.
S.
Jin
,
C. D.
Levermore
, and
D. W.
McLaughlin
, “
The semiclassical limit of the defocusing NLS hierarchy
,”
Commun. Pure Appl. Math.
52
,
613
654
(
1999
).
15.
N. M.
Ercolani
,
S.
Jin
,
C. D.
Levermore
, and
W. D.
MacEvoy
, “
The zero-dispersion limit for the odd flows in the focusing Zakharov-Shabat hierarchy
,”
Int. Math. Res. Notices
47
,
2529
2564
(
2003
).
16.
G. B.
Whitham
, “
Non-linear dispersive waves
,”
Proc. R. Soc. London, Ser. A
283
,
238
291
(
1965
).
17.
H.
Flaschka
,
G.
Forest
, and
D. W.
McLaughlin
, “
Multiphase averaging and the inverse spectral solutions of the Korteweg–de Vries equation
,”
Commun. Pure Appl. Math.
33
,
739
784
(
1979
).
18.
S.
Venakides
, “
The Korteweg–de Vries equation with small dispersion - higher-order Lax-Levermore theory
,”
Commun. Pure Appl. Math.
43
,
335
361
(
1990
).
19.
A. V.
Gurevich
, and
L. P.
Pitaevskii
, “
Nonstationary structure of a collisionless shock wave
,”
Sov. Phys. JETP
38
,
291
297
(
1974
).
20.
S. P.
Tsarev
, “
On Poisson brackets and one-dimensional systems of hydrodynamic type
,”
Sov. Math. Dokl.
31
,
488
491
(
1985
).
21.
I. M.
Krichever
, “
The method of averaging for two-dimensional “integrable” equations
,”
Funct. Anal. Appl.
22
,
200
213
(
1988
).
22.
G. A.
El
,
A. V.
Krylov
, and
S.
Venakides
, “
Unified approach to KdV modulations
,”
Commun. Pure Appl. Math.
54
,
1243
1270
(
2001
).
23.
T.
Grava
, “
Whitham equations, Bergman kernel and Lax-Levermore minimizer
,”
Acta Appl. Math.
82
,
1
86
(
2004
).
24.
W.
Choi
and
R.
Camassa
, “
Fully nonlinear internal waves in a two-fluid system
,”
J. Fluid Mech.
396
,
1
36
(
1999
).
25.
P. D.
Lax
and
T. Y.
Hou
, “
Dispersive approximations in fluid-dynamics
,”
Commun. Pure Appl. Math.
44
,
1
40
(
1991
).
26.
A. V.
Gurevich
and
A. P.
Meshcherkin
, “
Expanding self-similar discontinuities and shock waves in dispersive hydrodynamics
,”
Sov. Phys. JETP
60
,
732
(
1984
).
27.
A. M.
Kamchatnov
,
Nonlinear Periodic Waves and Their Modulations—An Introductory Course
(
World Scientific
, Singapore,
2000
).
28.
P.
Deift
,
S.
Venakides
, and
X.
Zhou
, “
The collisionless shock region for the long-time behaviour of solutions of the KdV equation
,”
Commun. Pure Appl. Math.
47
,
199
206
(
1994
)
29.
B. A.
Dubrovin
and
S. P.
Novikov
, “
Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory
,”
Russ. Math. Surveys
44
,
732
740
(
1989
).
30.
A. V.
Gurevich
,
A. L.
,
Krylov
, and
G. A.
El
, “
Riemannwave breaking in dispersive hydrodynamics
,”
JETP Lett.
54
,
102
107
(
1992
),
A. V.
Gurevich
,
A. L.
,
Krylov
, and
G. A.
El
, “
Evolution of a Riemann wave in dispersive hydrodynamics
,”
Sov. Phys. JETP
74
,
957
962
(
1992
).
31.
V. R.
Kudashev
, “
 ‘Waves-number conservation’ and succession of symmetries during a Whitham averaging
,”
JETP Lett.
54
,
175
178
(
1991
).
32.
S. P.
Novikov
,
S. V.
Manakov
,
L. P.
Pitaevskii
, and
V. E.
Zakharov
,
The Theory of Solitons: The Inverse Scattering Method
(
Consultants
, New York,
1984
).
33.
A. V.
Tyurina
and
G. A.
El
, “
Hydrodynamics of modulated finite-amplitude waves in dispersive media
,”
J. Exp. Theor. Phys.
88
,
615
625
(
1999
).
34.
G. B.
Whitham
,
Linear and Nonlinear Waves
(
Wiley–Interscience
, New York,
1974
).
35.
B. L.
Rozhdestvensky
, and
N. N.
Yanenko
,
Systems of Quasilinear Equations and their Applications in Gas Dynamics
[in Russian] (
Nauka
. Moscow,
1978
).
36.
C. D.
Levermore
, “
The hyperbolic nature of the zero dispersion KdV limit
,”
Commun. Partial Differ. Equ.
13
,
495
514
(
1988
).
37.
R.
Grimshaw
, “
Slowly varying solitary waves. I. Korteweg–de Vries equation
,”
Proc. R. Soc. London, Ser. A
368
,
359
375
(
1979
).
38.
A. V.
Gurevich
,
A. L.
Krylov
, and
G. A.
El
, “
Nonlinear modulated waves in dispersive hydrodynamics
,”
Sov. Phys. JETP
71
,
899
910
(
1990
).
39.
G. A.
El
,
V. V.
Khodorovskii
, and
A. V.
Tyurina
, “
Determination of boundaries of unsteady oscillatory zone in asymptotic solutions of non-integrable dispersive wave equations
,”
Phys. Lett. A
318
,
526
536
(
2000
).
40.
S. A.
Darmanyan
,
A. M.
Kamchatnov
, and
M.
Neviere
Polariton effect in nonlinear pulse propagation
,”
J. Exp. Theor. Phys.
96
,
876
884
(
2003
).
41.
C. F.
Driscoll
and
T. M.
O’Neil
, “
Modulational instability of cnoidal wave solutions of the modified Korteweg–de Vries equation
,”
J. Math. Phys.
17
,
1196
2000
(
1975
).
42.
D. J.
Kaup
, “
A higher order water-wave equation and method for solving it
,”
Prog. Theor. Phys.
54
,
396
408
(
1976
).
43.
G. A.
El
,
R. H.J.
Grimshaw
, and
M. V.
Pavlov
, “
Integrable shallow water equations and undular bores
,”
Stud. Appl. Math.
106
,
157
186
(
2001
).
44.
A. E.
Green
and
P. M.
Naghdi
, “
A derivation of equations for wave propagation in water of variable depth
,”
J. Fluid Mech.
78
,
237
246
(
1976
).
45.
V. I.
Karpman
,
Nonlinear Waves in Dispersive Media
(
Pergamon
Oxford,
1975
).
46.
G. A.
El
,
V. V.
Geogjaev
,
A. V.
Gurevich
, and
A. L.
Krylov
, “
Decay of an initial discontinuity in the defocusing NLS hydrodynamics
,”
Physica D
87
,
186
192
(
1995
).
47.
G. A.
El
,
V. V.
Khodorovskii
, and
A. V.
Tyurina
, “
Undular bore transition in non-integrable conservative wave dynamics
,
Physica D
(to be published).
48.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon
, Oxford,
1987
).
49.
G. A.
El
,
R. H.J.
Grimshaw
, and
N. F.
Smyth
, “
Fully nonlinear shallow water undular bores
” (unpublished).
50.
G. E.
Kuzmak
, “
Asymptotic solutions of nonlinear differential equations
,”
Prikl. Mat. Mekh.
23
,
515
526
. (
1959
).
You do not currently have access to this content.