We use the integrable Kaup–Boussinesq shallow water system, modified by a small viscous term, to model the formation of an undular bore with a steady profile. The description is made in terms of the corresponding integrable Whitham system, also appropriately modified by viscosity. This is derived in Riemann variables using a modified finite-gap integration technique for the Ablowitz–Kaup–Newell–Segur (AKNS) scheme. The Whitham system is then reduced to a simple first-order differential equation which is integrated numerically to obtain an asymptotic profile of the undular bore, with the local oscillatory structure described by the periodic solution of the unperturbed Kaup–Boussinesq system. This solution of the Whitham equations is shown to be consistent with certain jump conditions following directly from conservation laws for the original system. A comparison is made with the recently studied dissipationless case for the same system, where the undular bore is unsteady.

1.
N. I.
Akhiezer
(
1990
),
Elements of the Theory of Elliptic Functions
, (
Amer. Math. Soc.
, Providence, RI).
2.
J. R.
Apel
(
2003
), “
A new analytical model for internal solitons in the ocean
,”
J. Phys. Oceanogr.
,
33
2247
2269
.
3.
V. V.
Avilov
,
I. M.
Krichever
, and
S. P.
Novikov
(
1987
), “
Evolution of Whitham zone in the theory of Korteweg–de Vries
,
Dokl. Akad. Nauk SSSR
,
295
,
345
349
;
V. V.
Avilov
,
I. M.
Krichever
, and
S. P.
Novikov
[
Sov. Phys. Dokl.
,
32
,
564
566
(
1987
)].
4.
T. B.
Benjamin
and
M. J.
Lighthill
(
1954
), “
On cnoidal waves and bores
,”
Proc. R. Soc. London, Ser. A
224
,
448
460
.
5.
B. A.
Dubrovin
and
S. P.
Novikov
(
1989
), “
Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory
,”
Russ. Math. Surveys
44
,
35
124
.
6.
G. A.
El
,
R. H.J.
Grimshaw
, and
A. M.
Kamchatnov
(
2005
), “
Wave breaking and the generation of undular bores in an integrable shallow-water system
,”
Stud. Appl. Math.
114
,
395
411
.
7.
G. A.
El
,
R. H.J.
Grimshaw
, and
M. V.
Pavlov
(
2001
), “
Integrable shallow-water equations and undular bores
,”
Stud. Appl. Math.
,
106
,
157
186
.
8.
G. A.
El
and
A. L.
Krylov
(
1995
), “
General solution of the Cauchy problem for the defocusing NLS equation in the Whitham limit
,”
Phys. Lett. A
203
,
77
82
.
9.
H.
Flaschka
,
M. G.
Forest
, and
D. W.
McLaughlin
(
1980
), “
Multiphase averaging and the inverse spectral solutions of the Korteweg–de Vries equation
,”
Commun. Pure Appl. Math.
,
33
,
739
784
.
10.
M. G.
Forest
and
D. W.
McLaughlin
(
1984
), “
Modulation of perturbed KdV wavetrains
,”
SIAM J. Appl. Math.
,
44
,
287
300
.
11.
R. H.J.
Grimshaw
and
N. F.
Smyth
(
1986
), “
Resonant flow of a stratified fluid over topography
,”
J. Fluid Mech.
,
169
,
429
464
.
12.
A. V.
Gurevich
,
A. L.
Krylov
, and
G. A.
El
(
1991
), “
Riemann wave breaking in dispersive hydrodynamics
,”
JETP Lett.
,
54
,
102
107
;
A. V.
Gurevich
,
A. L.
Krylov
, and
G. A.
El
(
1992
) “
Evolution of a Riemann wave in dispersive hydrodynamics
,”
Sov. Phys. JETP
,
74
,
957
962
.
13.
A. V.
Gurevich
and
L. P.
Pitaevskii
(
1973
), “
Nonstationary structure of a collisionless shock wave
,”
Zh. Eksp. Teor. Fiz.
,
65
,
590
;
A. V.
Gurevich
and
L. P.
Pitaevskii
[
Sov. Phys. JETP
,
38
,
291
(
1974
)].
14.
A. V.
Gurevich
and
L. P.
Pitaevskii
(
1987
), “
Averaged description of waves in the Korteweg-de Vries-Burgers equation
,”
Zh. Eksp. Teor. Fiz.
,
93
,
871
880
;
A. V.
Gurevich
and
L. P.
Pitaevskii
[
Sov. Phys. JETP
,
66
,
490
495
(
1987
)].
15.
A. V.
Gurevich
and
L. P.
Pitaevskii
(
1991
), “
Nonlinear waves with dispersion and non-local damping
,”
Zh. Eksp. Teor. Fiz.
,
99
,
1470
1478
;
A. V.
Gurevich
and
L. P.
Pitaevskii
[
Sov. Phys. JETP
,
72
,
821
825
(
1991
)].
16.
C. G.J.
Jacobi
(
1884
), “
Vorlesungen über Dynamik
, (
Reimer
, Berlin); reprinted in
C. G.J.
Jacobi
,
Mathematische Werke
(
Bd. 8, Chelsea
, New York,
1969
).
17.
R. S.
Johnson
(
1970
), “
A non-linear equation incorporating damping and dispersion
,”
J. Fluid Mech.
,
42
,
49
60
.
18.
A. M.
Kamchatnov
(
2000
),
Nonlinear Periodic Waves and Their Modulations—An Introductory Course
(
World Scientific
, Singapore).
19.
A. M.
Kamchatnov
(
2004
), “
On Whitham theory for perturbed integrable equations
,”
Physica D
188
,
247
261
.
20.
A. M.
Kamchatnov
,
R. A.
Kraenkel
, and
B. A.
Umarov
(
2003
), “
Asymptotic soliton train solutions of Kaup-Boussinesq equations
,”
Wave Motion
,
38
,
355
365
.
21.
D. J.
Kaup
(
1976
), “
A higher order water-wave equation and method for solving it
,”
Prog. Theor. Phys.
,
54
,
396
408
.
22.
G. E.
Kuzmak
(
1959
), “
Asymptotic solutions of nonlinear differential equations
,”
Prikl. Mat. Mekh.
,
23
,
515
526
.
23.
P. D.
Lax
,
C. D.
Levermore
, and
S.
Venakides
(
1994
), “
The generation and propagation of oscillations in dispersive initial value problems and their limiting behavior
,” in
Important Developments in Soliton Theory
, edited by
A. S.
Fokas
and
V. E.
Zakharov
(
Springer-Verlag
, Berlin,
Heidelberg
, New York), pp.
205
241
.
24.
T. R.
Marchant
and
N. F.
Smyth
(
1991
), “
Initial-boundary problems for the Korteweg–de Vries equation
,”
IMA J. Appl. Math.
,
47
,
247
264
.
25.
T. R.
Marchant
and
N. F.
Smyth
(
2002
), “
The initial boundary problem for the Korteweg–de Vries equation on negative quarter-plane
,”
Proc. R. Soc. London, Ser. A
,
458
857
871
.
26.
S.
Myint
and
R. H.J.
Grimshaw
(
1995
), “
The modulation of nonlinear periodic wavetrains by dissipative terms in the Korteweg–de Vries equation
,”
Wave Motion
,
22
,
215
238
.
27.
R. Z.
Sagdeev
(
1964
),
Collective processes and shock waves in rarified plasma
, in
Problems of Plasma Theory
, edited by
M. A.
Leontovich
(
Atomizdat
, Moscow, Vol.
5
).
28.
N. F.
Smyth
(
1987
), “
Modulation theory for resonant flow over topography
,”
Proc. R. Soc. London, Ser. A
,
409A
,
79
97
.
29.
N. F.
Smyth
(
1988
), “
Dissipative effects on the resonant flow of a stratified fluid over topography
,”
J. Fluid Mech.
,
192
,
287
312
.
30.
S. P.
Tsarev
(
1985
), “
On Poisson brackets and one-dimensional systems of hydrodynamic type
,”
Sov. Math. Dokl.
31
,
488
491
.
31.
S. P.
Tsarev
(
1990
), “
The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method
,”
Inv. Akad. Nauk
,
54
,
1048
;
S. P.
Tsarev
[
Math. USSR, Izv.
,
37
,
397
(
1991
)].
32.
G. B.
Whitham
(
1965
), “
Nonlinear dispersive waves
,”
Proc. R. Soc. London, Ser. A
,
283
,
238
.
33.
G. B.
Whitham
(
1974
),
Linear and Nonlinear Waves
(
Wiley–Interscience
, New York).
You do not currently have access to this content.