We investigate the dynamical properties of chaotic trajectories in mushroom billiards. These billiards present a well-defined simple border between a single regular region and a single chaotic component. We find that the stickiness of chaotic trajectories near the border of the regular region occurs through an infinite number of marginally unstable periodic orbits. These orbits have zero measure, thus not affecting the ergodicity of the chaotic region. Notwithstanding, they govern the main dynamical properties of the system. In particular, we show that the marginally unstable periodic orbits explain the periodicity and the power-law behavior with exponent γ=2 observed in the distribution of recurrence times.

1.
3.
4.
G. M.
Zaslavsky
,
Physica D
168-169
,
292
(
2002
).
5.
M.
Weiss
,
L.
Hufnagel
, and
R.
Ketzmerick
,
Phys. Rev. E
67
,
046209
(
2003
).
6.
J. D.
Meiss
and
E.
Ott
,
Phys. Rev. Lett.
55
,
2741
(
1985
).
7.
B. V.
Chirikov
and
D. L.
Shepelyansky
,
Phys. Rev. Lett.
82
,
528
(
1999
).
8.
P.
Grassberger
and
H.
Kantz
,
Phys. Lett.
113
,
167
(
1985
).
10.
See, for example:
H.-J.
Stöckmann
,
Quantum Chaos: An Introduction
(
Cambridge University Press
, Cambridge,
1999
);
A.
Richter
, in
Emerging Applications of Number Theory, The IMA Volumes in Mathematics and its Applications
, edited by
D. A.
Hejhal
,
J.
Friedman
,
M. C.
Gutzwiller
, and
A. M.
Odlyzko
(
Springer
, New York,
1999
), Vol.
109
, p.
479
;
N.
Friedman
,
A.
Kaplan
,
D.
Carasso
, and
N.
Davidson
,
Phys. Rev. Lett.
86
,
1518
(
2001
).
[PubMed]
11.
E. G.
Altmann
,
E. C.
da Silva
, and
I. L.
Caldas
,
Chaos
14
,
975
(
2004
).
12.
A. E.
Motter
,
A. P.S.
de Moura
,
C.
Grebogi
, and
H.
Kantz
,
Phys. Rev. E
71
,
036215
(
2005
).
13.
L. A.
Bunimovich
,
Commun. Math. Phys.
65
,
295
(
1979
);
L. A.
Bunimovich
and
Y.
Sinai
,
Commun. Math. Phys.
78
,
479
(
1980
).
14.
P.
Gaspard
and
J. R.
Dorfman
,
Phys. Rev. E
52
,
3525
(
1995
).
15.
D. N.
Armstead
,
B. R.
Hunt
, and
E.
Ott
,
Physica D
193
,
96
(
2004
).
16.
F.
Vivaldi
,
G.
Casati
, and
I.
Guarneri
,
Phys. Rev. Lett.
51
,
727
(
1983
).
17.
E. G.
Altmann
,
A. E.
Motter
, and
H.
Kantz
(in preparation).
You do not currently have access to this content.