1.
A.
Einstein
, “
Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen
,”
Ann. Phys.
17
,
549
560
(
1905
).
2.
R.
Brown
, “
A brief account of microscopical observations made in the months of June, July, and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies
,”
Philos. Mag.
4
,
161
173
(
1828
);
R.
Brown
, “
Additional remarks on active molecules
,”
Philos. Mag.
6
,
161
166
(
1829
);
R.
Brown
,
Edinb. New Philos. J.
5
,
358
371
(
1828
).
3.
This “Einstein” relation has been obtained independently in 1904 by
William
Sutherland
(4 August, 1859–5 October, 1911) [
W.
Sutherland
, “
A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin
,”
Philos. Mag.
9
,
781
785
(
1905
)].
This work was actually submitted for publication even some months earlier (March 1905) as compared to Einstein’s paper (May 11, 1905). See:
A.
Pais
,
Subtle is the Lord…. The Science and the Life of Albert Einstein
(
Oxford University Press
, Oxford,
1982
), p.
92
.
4.
H. B.
Callen
and
T. A.
Welton
, “
Irreversibility and generalized noise
,”
Phys. Rev.
83
,
34
40
(
1951
).
5.
R.
Kubo
, “
Statistical-mechanical theory of irreversible processes. 1. General theory and simple applications to magnetic and conduction problems
,”
J. Phys. Soc. Jpn.
12
,
570
586
(
1957
).
6.
A.
Einstein
, “
Eine neue Bestimmung der Moleküldimensionen
,”
Ann. Phys.
19
,
289
306
(
1906
);
A.
Einstein
,
Ann. Phys.
34
,
591
592
(
1911
) (erratum).
7.
A.
Einstein
, “
Elementare Theorie der Brownschen Bewegung
,”
Z. Elektrochem. Angew. Phys. Chem.
14
,
235
239
(
1908
).
8.
A.
Bader
and
L.
Parker
, “
Josef Loschmidt, physicist and chemist
,”
Phys. Today
54
,
45
50
(
2001
).
9.
J. B.
Perrin
, “
Mouvement brownien et réalité moléculaire
,”
Ann. Chim. Phys.
18
,
5
114
(
1909
);
J.
Perrin
,
Atoms
, translated by
D. Ll.
Hammick
, (Constable, London, 1920) and reprinted by (
Ox Bow
, Woodbridge,
1990
), Chaps. II–IV.
10.
S. E.
Virgo
, “
Loschmidt’s number
,”
Sci. Prog.
27
,
634
649
(
1933
);
11.
M.
von Smoluchowski
, “
Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen
,”
Ann. Phys.
21
,
756
780
(
1906
).
12.
P.
Langevin
, “
Sur la théorie de movement brownien
,”
C. R. Hebd. Seances Acad. Sci.
146
,
530
533
(
1908
);
see also:
D. S.
Lemons
and
A.
Gythiel
, “Paul Langevin’s 1908 paper “
On the theory of Brownian motion
” [“
Sur la théorie du mouvement brownien
,”
Am. J. Phys.
146
,
530
533
(
1908
)],”
D. S.
Lemons
and
A.
Gythiel
,
Am. J. Phys.
65
,
1079
1081
(
1997
).
13.
N.
Wiener
, “
The mean of a functional of arbitrary elements
,”
Ann. Math.
22
,
66
72
(
1920
);
N.
Wiener
,“
The average of an analytic functional and the Brownian movement
,”
Proc. Natl. Acad. Sci. U.S.A.
7
,
294
298
(
1921
);
[PubMed]
N.
Wiener
,“
Differential space
,”
J. Math. Phys. Sci.
2
,
131
174
(
1923
);
Collected Works
, edited by
P.
Masani
(
M.I.T.
, Cambridge, MA,
1976–1981
);
see also
S. D.
Chatterji
, “
The mathematical work of Norbert Wiener
,”
Kybernetes
23
,
34
45
(
1994
).
14.
R. M.
Mazo
,
Brownian Motion
(
Oxford Science
, Oxford,
2002
).
15.
M. D.
Haw
, “
Colloidal suspensions, Brownian motion, molecular reality: A short history
,”
J. Phys.: Condens. Matter
14
,
7769
7779
(
2002
).
16.
J. G.
Powles
, “
Brownian motion—June 1827
,”
Phys. Educ.
13
,
310
312
(
1978
).
17.
E.
Nelson
,
Dynamical Theories of Brownian Motion
(
Princeton University Press
, Princeton,
1967
);
18.
L.
Onsager
, “
Reciprocal relations in irreversible processes. 1
,”
Phys. Rev.
37
,
405
426
(
1931
);
L.
Onsager
Reciprocal relations in irreversible processes. 2
,”
Phys. Rev.
38
,
2265
2279
(
1931
).
19.
M. S.
Green
, “
Markov random processes and the statistical mechanics of time-dependent phenomena
,”
J. Chem. Phys.
20
,
1281
1295
(
1952
);
M. S.
Green
Markov random processes and the statistical mechanics of time-dependent phenomena. 2. Irreversible processes in fluids
,”
J. Chem. Phys.
22
,
398
413
(
1954
).
20.
R.
Kubo
, “
Fluctuation-dissipation theorem
,”
Rep. Prog. Phys.
29
,
255
284
(
1966
);
R.
Kubo
,“
Brownian motion and nonequilibrium statistical mechanics
,”
Science
233
,
330
334
(
1986
).
[PubMed]
21.
P.
Hänggi
and
H.
Thomas
, “
Stochastic processes: Time-evolution, symmetries and linear response
,”
Phys. Rep.
88
,
207
319
(
1982
);
P.
Hänggi
, “
Stochastic processes. II. Response theory and fluctuation theorems
,”
Helv. Phys. Acta
51
,
202
219
(
1978
);
P.
Hänggi
Stochastic Processes I: Asymptotic behaviour and symmetries
,”
Helv. Phys. Acta
51
,
183
201
(
1978
).
22.
D. J.
Evans
,
E. G. D.
Cohen
, and
G. P.
Morris
, “
Probability of 2nd law violations in shearing steady states
,”
Phys. Rev. Lett.
71
,
2401
2404
(
1993
);
[PubMed]
G.
Gallavotti
and
E. G. D.
Cohen
, “
Dynamical ensembles in nonequilibrium statistical mechanics
,”
Phys. Rev. Lett.
74
,
2694
2697
(
1995
);
[PubMed]
G.
Gallavotti
and
E. G. D.
Cohen
, “
Dynamical ensembles in stationary states
,”
J. Stat. Phys.
80
,
931
970
(
1995
);
D. J.
Evans
and
D. J.
Searles
, “
The fluctuation theorem
,”
Adv. Phys.
51
,
1529
1558
(
2002
).
23.
C.
Jarzynski
, “
Nonequilibrium equality for free energy differences
,”
Phys. Rev. Lett.
78
,
2690
2694
(
1997
);
C.
Jarzynski
Equilibrium free energy differences from nonequilibrium measurements: a master equation approach
,”
Phys. Rev. E
56
,
5018
5035
(
1997
).
24.
F.
Cecconi
,
M.
Cencini
,
M.
Falconi
, and
A.
Vulpiani
, “
Brownian motion and diffusion: From stochastic processes to chaos and beyond
,”
Chaos
15
,
026102
(
2005
).
25.
P.
Hänggi
and
G. l.
Ingold
, “
Fundamental aspects of quantum Brownian motion
Chaos
15
,
026105
(
2005
).
26.
J.
Ankerhold
,
H.
Grabert
, and
P.
Pechukas
, “
Quantum Brownian motion with large friction
,”
Chaos
15
,
026106
(
2005
).
27.
R. P.
Feynman
, “
Space-time approach to non-relativistic quantum mechanics
,”
Rev. Mod. Phys.
20
,
367
387
(
1948
);
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
, New York,
1965
).
28.
H.
Kleinert
,
Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets
, 3rd ed. (World Scientific, Singapore,
2004
).
29.
L.
Onsager
and
S.
Machlup
, “
Fluctuations and irreversible processes
,”
Phys. Rev.
91
,
1505
1512
(
1953
);
S.
Machlup
and
L.
Onsager
, “
Fluctuations and irreversible processes. 2 Systems with kinetic energy
,”
Phys. Rev.
91
,
1512
1515
(
1953
).
30.
H.
Haken
, “
Generalized Onsager-Machlup function and classes of path integral solutions of Fokker-Planck equation and master equation
,”
Z. Phys. B
24
,
321
326
(
1976
);
R.
Graham
, “
Path integral formulation of general diffusion processes
,”
Z. Phys. B
26
,
281
290
(
1977
);
F.
Langouche
,
D.
Roekaerts
, and
E.
Tirapegui
,
Functional Integration and Semiclassical Expansions
, Mathematics and Its Application, (
Reidel
, Dordrecht,
1982
), Vol.
10
, Chap. VII.
31.
L.
Pesquera
,
M. A.
Rodriguez
, and
E.
Santos
, “
Path-integrals for non-Markovian processes
,”
Phys. Lett.
94A
,
287
289
(
1983
);
P.
Hänggi
, “
Path-integral solutions for non-Markovian processes
,”
Z. Phys. B: Condens. Matter
75
,
275
281
(
1989
);
H. S.
Wio
,
P.
Collet
,
M.
San Miguel
,
P.
Pesquera
, and
M. A.
Rodriguez
, “
Path-integral formulation for stochastic processes driven by colored noise
,”
Phys. Rev. A
40
,
7312
7324
(
1989
);
A. J.
Mc Kane
,
H. C.
Luckock
, and
A. J.
Bray
, “
Path Integrals and Non-Markov Processes. 1. General formalism
,”
Phys. Rev. A
41
,
644
656
(
1990
).
[PubMed]
32.
B.
Mandelbrot
,
The Fractal Geometry of Nature
(
Freeman
, San Francisco,
1982
);
G. M.
Zaslavsky
, “
Fractional kinetic equation for Hamiltonian chaos
,”
Physica D
76
,
110
122
(
1994
);
J. P.
Bouchaud
and
A.
Georges
, “
Anomalous diffusion in disordered media—Statistical mechanisms, models and physical applications
,”
Phys. Rep.
195
,
127
293
(
1990
);
Lévy Flights and Related Topics in Physics
, edited by
M.
Shlesinger
,
G. M.
Zaslavsky
, and
U.
Frisch
(
Springer
, Berlin,
1995
);
J.
Klafter
,
M. F.
Shlesinger
, and
G.
Zumofen
, “
Beyond Brownian motion
,”
Phys. Today
49
(2),
33
39
(
1996
);
R.
Metzler
and
J.
Klafter
, “
The random walk’s guide to anomalous diffusion: A fractional dynamics approach
,”
Phys. Rep.
339
,
1
77
(
2000
);
G. M.
Zaslavsky
, “
Chaos, fractional kinetics, and anomalous transport
,”
Phys. Rep.
371
,
461
580
(
2002
).
33.
J.
Feder
,
Fractals
(
Springer
, Berlin,
1988
).
34.
L. M.
Sander
and
E.
Somfai
, “
Random walks, diffusion limited aggregation in a wedge, and average conformal maps
,”
Chaos
15
,
026109
(
2005
).
35.
I. M.
Sokolov
and
J.
Klafter
, “
From diffusion to anomalous diffusion: A century after Einstein’s Brownian motion
,”
Chaos
15
,
026103
(
2005
).
36.
H.
Risken
,
The Fokker-Planck Equation, Methods of Solution and Applications
, 2nd ed. (
Springer
, Berlin,
1992
).
37.
W. T.
Coffey
,
Yu. P.
Kalmykov
, and
J. T.
Waldron
,
The Langevin Equation
, 2nd ed. (
World Scientific
, Singapore,
2004
).
38.
P.
Hänggi
,
F.
Marchesoni
, and
P.
Grigolini
, “
Bistable flow driven by coloured noise: A critical case study
,”
Z. Phys. B: Condens. Matter
56
,
333
339
(
1984
);
P.
Hänggi
and
P.
Jung
, “
Colored noise in dynamical systems
,”
Adv. Chem. Phys.
89
,
239
326
(
1995
).
39.
J.
Luczka
, “
Non-Markovian stochastic processes: Colored noise
,”
Chaos
15
,
026107
(
2005
).
40.
R.
Zwanzig
, “
Memory effects in irreversible thermodynamics
,”
Phys. Rev.
124
,
983
992
(
1961
);
H.
Grabert
, “
Projection operator techniques in nonequilibrium statistical mechanics
,”
Springer Tracts Mod. Phys.
95
,
1
164
(
1982
);
F.
Haake
, “
Statistical treatment of open systems by generalized master equations
,”
Springer Tracts Mod. Phys.
66
,
98
168
(
1973
);
H.
Spohn
, “
Kinetic equations from Hamiltonian dynamics: Markovian limits
,”
Rev. Mod. Phys.
52
,
569
615
(
1980
);
F.
Marchesoni
and
P.
Grigolini
, “
On the extension of the Kramers theory of chemical relaxation to the case of non-white noise
,”
J. Chem. Phys.
78
,
6287
6298
(
1983
);
F.
Marchesoni
and
P.
Grigolini
, “
Basic description of the rules leading to the adiabatic elimination of fast variables
,”
Adv. Chem. Phys.
62
,
29
80
(
1985
);
R.
Alicki
, “
General theory and applications to unstable particles
,” in
Quantum Dynamical Semigroups and Applications
, Lecture Notes in Physics Vol.
286
(
Springer
, Berlin,
1987
), Chaps. II and III.
41.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
, Oxford,
2001
).
42.
H.
Mori
, “
Transport, collective motion and Brownian motion
,”
Prog. Theor. Phys.
33
,
423
455
(
1965
);
K.
Kawasaki
, “
Simple derivations of generalized linear and nonlinear Langevin equations
,”
J. Phys. A
6
,
1289
1295
(
1973
);
S.
Nordholm
and
R.
Zwanzig
, “
Systematic derivation of exact generalized Brownian-motion theory
,”
J. Stat. Phys.
13
,
347
371
(
1975
);
H.
Grabert
,
P.
Hänggi
, and
P.
Talkner
, “
Microdynamics and nonlinear stochastic processes of gross variables
,”
J. Stat. Phys.
22
,
537
552
(
1980
);
P.
Hänggi
, “
Generalized Langevin equations: A useful tool for the perplexed modeller of nonequilibrium fluctuations?
,”
Lect. Notes Phys.
484
,
15
22
(
1997
);
G. W.
Ford
,
J. T.
Lewis
, and
R. F.
O’Connell
, “
Quantum Langevin equation
,”
Phys. Rev. A
37
,
4419
4428
(
1988
).
43.
K.
Kawasaki
, “
Kinetic equations and time correlation functions of critical fluctuations
,”
Ann. Phys.
(New York)
61
,
1
56
(
1970
);
E.
Leutheusser
, “
Dynamical model of the liquid-glass transition
,”
Phys. Rev. A
29
,
2765
2773
(
1984
);
K.
Binder
and
A. P.
Young
, “
Spin-glasses: Experimental facts, theoretical concepts, and open questions
,”
Rev. Mod. Phys.
58
801
976
(
1986
);
C. A.
Angell
, “
Dynamic processes in ionic glasses
,”
Chem. Rev. (Washington, D.C.)
90
,
523
542
(
1990
);
U. T.
Höchli
,
K.
Knorr
, and
A.
Loidl
, “
Orientational glasses
,”
Adv. Phys.
39
,
405
615
(
1990
);
W.
Götze
and
L.
Sjogren
, “
Relaxation processes in supercooled liquids
,”
Rep. Prog. Phys.
55
,
241
376
(
1992
);
J. P.
Bouchaud
,
L.
Cugliandolo
,
J.
Kurchan
, and
M.
Mezard
, “
Mode-coupling approximations, glass theory and disordered systems
,”
Physica A
226
,
243
273
(
1996
).
44.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
, “
Reaction-rate theory: Fifty years after Kramers
,”
Rev. Mod. Phys.
62
,
251
342
(
1990
).
45.
E.
Pollak
and
P.
Talkner
, “
Reaction rate theory—What it was, where it is today and where is it going
,”
Chaos
15
,
026116
(
2005
).
46.
L.
Gammaitoni
,
P.
Hänggi
,
P.
Jung
, and
F.
Marchesoni
, “
Stochastic resonance
,”
Rev. Mod. Phys.
70
,
223
288
(
1998
).
47.
P.
Hänggi
, “
Stochastic resonance in biology
,”
ChemPhysChem
3
,
285
290
(
2002
);
[PubMed]
K.
Wiesenfeld
and
F.
Moss
, “
Stochastic resonace and the benefits of noise—From ice ages to crayfish and squids
,”
Nature (London)
373
,
33
36
(
1995
).
48.
P.
Hänggi
, “
Brownian rectifiers: How to convert Brownian motion into directed transport
,”
Lect. Notes Phys.
476
,
294
308
(
1996
);
P.
Reimann
and
P.
Hänggi
, “
Quantum features of Brownian motors and stochastic resonance
,”
Chaos
8
,
629
642
(
1998
);
[PubMed]
R. D.
Astumian
and
P.
Hänggi
, “
Brownian motors
,”
Phys. Today
55
(11),
33
39
(
2002
);
P.
Reimann
, “
Brownian motors: Noisy transport far from equilibrium
,”
Phys. Rep.
361
,
57
265
(
2002
);
H.
Linke
, “
Ratchets and Brownian motors: Basics, experiments and applications
,” (special issue),
Appl. Phys. A: Mater. Sci. Process.
75
,
167
352
(
2002
);
P.
Hänggi
,
F.
Marchesoni
, and
F.
Nori
, “
Brownian motors
,”
Ann. Phys.
14
,
51
70
(
2005
).
49.
D.
Babic
,
C.
Schmitt
, and
C.
Bechinger
, “
Colloids a smodel systems for problems in statistical physics
,”
Chaos
15
,
026114
(
2005
).
50.
J.
Casado-Pascual
,
J.
Gomez-Ordonez
, and
M.
Morillo
, “
Stochastic Resonance: Theory and numerics
,”
Chaos
15
,
026115
(
2005
).
51.
H.
Linke
,
M. D.
Downton
, and
M. J.
Zuckermann
, “
Performance characteristics of Brownian motors
,”
Chaos
15
,
026111
(
2005
).
52.
M.
Borromeo
and
F.
Marchesoni
, “
Asymmetric confinement in a noisy bistable device
,”
Europhys. Lett.
68
,
783
789
(
2004
);
M.
Borromeo
and
F.
Marchesoni
,“
Noise-assisted transport on symmetric periodic substrates
,”
Chaos
15
,
026110
(
2005
).
53.
S.
Savel’ev
and
F.
Nori
, “
Controlling the motion of interacting particles: Homogeneous systems and binary mixtures
,”
Chaos
15
,
026112
(
2005
).
54.
R.
Eichhorn
,
P.
Reimann
,
B.
Cleuren
, and
C.
van den Broeck
, “
Moving backward noisily
,”
Chaos
15
,
026113
(
2005
).
55.
E.
Frey
and
K.
Kroy
, “
Brownian motion: Paradigm of soft matter and biological physics
,”
Ann. Phys.
14
,
20
50
(
2005
).
56.
N. V.
Brilliantov
and
T.
Pöschel
, “
Self-diffusion in granular gases; Green-Kubo versus Chapman-Enskog
,”
Chaos
15
,
026108
(
2005
).
57.
F.
Marchesoni
, “
Solitons in a random field of force: A Langevin equation approach
,”
Phys. Lett. A
115
,
29
32
(
1986
);
P.
Hänggi
,
F.
Marchesoni
, and
P.
Sodano
, “
Nucleation of thermal sine-Gordon solitons: Effects of many-body interactions
,”
Phys. Rev. Lett.
60
,
2563
2566
(
1988
);
[PubMed]
for an early review see:
J. P.
Hirth
and
J.
Lothe
,
Theory of Dislocations
(
Wiley
, New York,
1982
).
58.
M.
Zaks
,
X.
Sailer
,
L.
Schimansky-Geier
, and
A.
Neiman
, “
Noise-induced complexity: From subthreshold oscillations to spiking in coupled excitable systems
,”
Chaos
15
,
026117
(
2005
).
59.
J. P.
Bouchaud
, “
The Subtle nature of financial random walks
,”
Chaos
15
,
026104
(
2005
).
You do not currently have access to this content.