REFERENCES
1.
A.
Einstein
, “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen
,” Ann. Phys.
17
, 549
–560
(1905
).2.
R.
Brown
, “A brief account of microscopical observations made in the months of June, July, and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies
,” Philos. Mag.
4
, 161
–173
(1828
);R.
Brown
, “Additional remarks on active molecules
,” Philos. Mag.
6
, 161
–166
(1829
);R.
Brown
,Edinb. New Philos. J.
5
, 358
–371
(1828
).3.
This “Einstein” relation has been obtained independently in 1904 by
William
Sutherland
(4 August, 1859–5 October, 1911) [W.
Sutherland
, “A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin
,” Philos. Mag.
9
, 781
–785
(1905
)].This work was actually submitted for publication even some months earlier (March 1905) as compared to Einstein’s paper (May 11, 1905). See:
A.
Pais
, Subtle is the Lord…. The Science and the Life of Albert Einstein
(Oxford University Press
, Oxford, 1982
), p. 92
.Furthermore, see also on the url: http://www.aapps.org/archive/bulletin/vol14/14̱6/14̱6̱p46p51.html
4.
H. B.
Callen
and T. A.
Welton
, “Irreversibility and generalized noise
,” Phys. Rev.
83
, 34
–40
(1951
).5.
R.
Kubo
, “Statistical-mechanical theory of irreversible processes. 1. General theory and simple applications to magnetic and conduction problems
,” J. Phys. Soc. Jpn.
12
, 570
–586
(1957
).6.
A.
Einstein
, “Eine neue Bestimmung der Moleküldimensionen
,” Ann. Phys.
19
, 289
–306
(1906
);A.
Einstein
, Ann. Phys.
34
, 591
–592
(1911
) (erratum).7.
A.
Einstein
, “Elementare Theorie der Brownschen Bewegung
,” Z. Elektrochem. Angew. Phys. Chem.
14
, 235
–239
(1908
).8.
A.
Bader
and L.
Parker
, “Josef Loschmidt, physicist and chemist
,” Phys. Today
54
, 45
–50
(2001
).9.
J. B.
Perrin
, “Mouvement brownien et réalité moléculaire
,” Ann. Chim. Phys.
18
, 5
–114
(1909
);J.
Perrin
, Atoms
, translated by D. Ll.
Hammick
, (Constable, London, 1920) and reprinted by (Ox Bow
, Woodbridge, 1990
), Chaps. II–IV.10.
11.
M.
von Smoluchowski
, “Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen
,” Ann. Phys.
21
, 756
–780
(1906
).12.
P.
Langevin
, “Sur la théorie de movement brownien
,” C. R. Hebd. Seances Acad. Sci.
146
, 530
–533
(1908
);see also:
D. S.
Lemons
and A.
Gythiel
, “Paul Langevin’s 1908 paper “On the theory of Brownian motion
” [“Sur la théorie du mouvement brownien
,” Am. J. Phys.
146
, 530
–533
(1908
)],”D. S.
Lemons
and A.
Gythiel
,Am. J. Phys.
65
, 1079
–1081
(1997
).13.
N.
Wiener
, “The mean of a functional of arbitrary elements
,” Ann. Math.
22
, 66
–72
(1920
);N.
Wiener
,“The average of an analytic functional and the Brownian movement
,” Proc. Natl. Acad. Sci. U.S.A.
7
, 294
–298
(1921
);
[PubMed]
N.
Wiener
,“Differential space
,” J. Math. Phys. Sci.
2
, 131
–174
(1923
);see also
S. D.
Chatterji
, “The mathematical work of Norbert Wiener
,” Kybernetes
23
, 34
–45
(1994
).14.
15.
M. D.
Haw
, “Colloidal suspensions, Brownian motion, molecular reality: A short history
,” J. Phys.: Condens. Matter
14
, 7769
–7779
(2002
).16.
J. G.
Powles
, “Brownian motion—June 1827
,” Phys. Educ.
13
, 310
–312
(1978
).17.
E.
Nelson
, Dynamical Theories of Brownian Motion
(Princeton University Press
, Princeton, 1967
);2nd ed. available on the web: http://www.math.princeton.edu/̃nelson/books/bmotion.pdf
18.
L.
Onsager
, “Reciprocal relations in irreversible processes. 1
,” Phys. Rev.
37
, 405
–426
(1931
);L.
Onsager
“Reciprocal relations in irreversible processes. 2
,” Phys. Rev.
38
, 2265
–2279
(1931
).19.
M. S.
Green
, “Markov random processes and the statistical mechanics of time-dependent phenomena
,” J. Chem. Phys.
20
, 1281
–1295
(1952
);M. S.
Green
“Markov random processes and the statistical mechanics of time-dependent phenomena. 2. Irreversible processes in fluids
,” J. Chem. Phys.
22
, 398
–413
(1954
).20.
R.
Kubo
, “Fluctuation-dissipation theorem
,” Rep. Prog. Phys.
29
, 255
–284
(1966
);R.
Kubo
,“Brownian motion and nonequilibrium statistical mechanics
,” Science
233
, 330
–334
(1986
).
[PubMed]
21.
P.
Hänggi
and H.
Thomas
, “Stochastic processes: Time-evolution, symmetries and linear response
,” Phys. Rep.
88
, 207
–319
(1982
);P.
Hänggi
, “Stochastic processes. II. Response theory and fluctuation theorems
,” Helv. Phys. Acta
51
, 202
–219
(1978
);P.
Hänggi
“Stochastic Processes I: Asymptotic behaviour and symmetries
,” Helv. Phys. Acta
51
, 183
–201
(1978
).22.
D. J.
Evans
, E. G. D.
Cohen
, and G. P.
Morris
, “Probability of 2nd law violations in shearing steady states
,” Phys. Rev. Lett.
71
, 2401
–2404
(1993
);
[PubMed]
G.
Gallavotti
and E. G. D.
Cohen
, “Dynamical ensembles in nonequilibrium statistical mechanics
,” Phys. Rev. Lett.
74
, 2694
–2697
(1995
);
[PubMed]
G.
Gallavotti
and E. G. D.
Cohen
, “Dynamical ensembles in stationary states
,” J. Stat. Phys.
80
, 931
–970
(1995
);D. J.
Evans
and D. J.
Searles
, “The fluctuation theorem
,” Adv. Phys.
51
, 1529
–1558
(2002
).23.
C.
Jarzynski
, “Nonequilibrium equality for free energy differences
,” Phys. Rev. Lett.
78
, 2690
–2694
(1997
);C.
Jarzynski
“Equilibrium free energy differences from nonequilibrium measurements: a master equation approach
,” Phys. Rev. E
56
, 5018
–5035
(1997
).24.
F.
Cecconi
, M.
Cencini
, M.
Falconi
, and A.
Vulpiani
, “Brownian motion and diffusion: From stochastic processes to chaos and beyond
,” Chaos
15
, 026102
(2005
).25.
P.
Hänggi
and G. l.
Ingold
, “Fundamental aspects of quantum Brownian motion
” Chaos
15
, 026105
(2005
).26.
J.
Ankerhold
, H.
Grabert
, and P.
Pechukas
, “Quantum Brownian motion with large friction
,” Chaos
15
, 026106
(2005
).27.
R. P.
Feynman
, “Space-time approach to non-relativistic quantum mechanics
,” Rev. Mod. Phys.
20
, 367
–387
(1948
);R. P.
Feynman
and A. R.
Hibbs
, Quantum Mechanics and Path Integrals
(McGraw-Hill
, New York, 1965
).28.
H.
Kleinert
, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets
, 3rd ed. (World Scientific, Singapore, 2004
).29.
L.
Onsager
and S.
Machlup
, “Fluctuations and irreversible processes
,” Phys. Rev.
91
, 1505
–1512
(1953
);S.
Machlup
and L.
Onsager
, “Fluctuations and irreversible processes. 2 Systems with kinetic energy
,” Phys. Rev.
91
, 1512
–1515
(1953
).30.
H.
Haken
, “Generalized Onsager-Machlup function and classes of path integral solutions of Fokker-Planck equation and master equation
,” Z. Phys. B
24
, 321
–326
(1976
);R.
Graham
, “Path integral formulation of general diffusion processes
,” Z. Phys. B
26
, 281
–290
(1977
);F.
Langouche
, D.
Roekaerts
, and E.
Tirapegui
, Functional Integration and Semiclassical Expansions
, Mathematics and Its Application, (Reidel
, Dordrecht, 1982
), Vol. 10
, Chap. VII.31.
L.
Pesquera
, M. A.
Rodriguez
, and E.
Santos
, “Path-integrals for non-Markovian processes
,” Phys. Lett.
94A
, 287
–289
(1983
);P.
Hänggi
, “Path-integral solutions for non-Markovian processes
,” Z. Phys. B: Condens. Matter
75
, 275
–281
(1989
);H. S.
Wio
, P.
Collet
, M.
San Miguel
, P.
Pesquera
, and M. A.
Rodriguez
, “Path-integral formulation for stochastic processes driven by colored noise
,” Phys. Rev. A
40
, 7312
–7324
(1989
);A. J.
Mc Kane
, H. C.
Luckock
, and A. J.
Bray
, “Path Integrals and Non-Markov Processes. 1. General formalism
,” Phys. Rev. A
41
, 644
–656
(1990
).
[PubMed]
32.
G. M.
Zaslavsky
, “Fractional kinetic equation for Hamiltonian chaos
,” Physica D
76
, 110
–122
(1994
);J. P.
Bouchaud
and A.
Georges
, “Anomalous diffusion in disordered media—Statistical mechanisms, models and physical applications
,” Phys. Rep.
195
, 127
–293
(1990
);Lévy Flights and Related Topics in Physics
, edited by M.
Shlesinger
, G. M.
Zaslavsky
, and U.
Frisch
(Springer
, Berlin, 1995
);J.
Klafter
, M. F.
Shlesinger
, and G.
Zumofen
, “Beyond Brownian motion
,” Phys. Today
49
(2), 33
–39
(1996
);R.
Metzler
and J.
Klafter
, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach
,” Phys. Rep.
339
, 1
–77
(2000
);G. M.
Zaslavsky
, “Chaos, fractional kinetics, and anomalous transport
,” Phys. Rep.
371
, 461
–580
(2002
).33.
34.
L. M.
Sander
and E.
Somfai
, “Random walks, diffusion limited aggregation in a wedge, and average conformal maps
,” Chaos
15
, 026109
(2005
).35.
I. M.
Sokolov
and J.
Klafter
, “From diffusion to anomalous diffusion: A century after Einstein’s Brownian motion
,” Chaos
15
, 026103
(2005
).36.
H.
Risken
, The Fokker-Planck Equation, Methods of Solution and Applications
, 2nd ed. (Springer
, Berlin, 1992
).37.
W. T.
Coffey
, Yu. P.
Kalmykov
, and J. T.
Waldron
, The Langevin Equation
, 2nd ed. (World Scientific
, Singapore, 2004
).38.
P.
Hänggi
, F.
Marchesoni
, and P.
Grigolini
, “Bistable flow driven by coloured noise: A critical case study
,” Z. Phys. B: Condens. Matter
56
, 333
–339
(1984
);P.
Hänggi
and P.
Jung
, “Colored noise in dynamical systems
,” Adv. Chem. Phys.
89
, 239
–326
(1995
).39.
J.
Luczka
, “Non-Markovian stochastic processes: Colored noise
,” Chaos
15
, 026107
(2005
).40.
R.
Zwanzig
, “Memory effects in irreversible thermodynamics
,” Phys. Rev.
124
, 983
–992
(1961
);H.
Grabert
, “Projection operator techniques in nonequilibrium statistical mechanics
,” Springer Tracts Mod. Phys.
95
, 1
–164
(1982
);F.
Haake
, “Statistical treatment of open systems by generalized master equations
,” Springer Tracts Mod. Phys.
66
, 98
–168
(1973
);H.
Spohn
, “Kinetic equations from Hamiltonian dynamics: Markovian limits
,” Rev. Mod. Phys.
52
, 569
–615
(1980
);F.
Marchesoni
and P.
Grigolini
, “On the extension of the Kramers theory of chemical relaxation to the case of non-white noise
,” J. Chem. Phys.
78
, 6287
–6298
(1983
);F.
Marchesoni
and P.
Grigolini
, “Basic description of the rules leading to the adiabatic elimination of fast variables
,” Adv. Chem. Phys.
62
, 29
–80
(1985
);R.
Alicki
, “General theory and applications to unstable particles
,” in Quantum Dynamical Semigroups and Applications
, Lecture Notes in Physics Vol. 286
(Springer
, Berlin, 1987
), Chaps. II and III.41.
R.
Zwanzig
, Nonequilibrium Statistical Mechanics
(Oxford University Press
, Oxford, 2001
).42.
H.
Mori
, “Transport, collective motion and Brownian motion
,” Prog. Theor. Phys.
33
, 423
–455
(1965
);K.
Kawasaki
, “Simple derivations of generalized linear and nonlinear Langevin equations
,” J. Phys. A
6
, 1289
–1295
(1973
);S.
Nordholm
and R.
Zwanzig
, “Systematic derivation of exact generalized Brownian-motion theory
,” J. Stat. Phys.
13
, 347
–371
(1975
);H.
Grabert
, P.
Hänggi
, and P.
Talkner
, “Microdynamics and nonlinear stochastic processes of gross variables
,” J. Stat. Phys.
22
, 537
–552
(1980
);P.
Hänggi
, “Generalized Langevin equations: A useful tool for the perplexed modeller of nonequilibrium fluctuations?
,” Lect. Notes Phys.
484
, 15
–22
(1997
);G. W.
Ford
, J. T.
Lewis
, and R. F.
O’Connell
, “Quantum Langevin equation
,” Phys. Rev. A
37
, 4419
–4428
(1988
).43.
K.
Kawasaki
, “Kinetic equations and time correlation functions of critical fluctuations
,” Ann. Phys.
(New York) 61
, 1
–56
(1970
);E.
Leutheusser
, “Dynamical model of the liquid-glass transition
,” Phys. Rev. A
29
, 2765
–2773
(1984
);K.
Binder
and A. P.
Young
, “Spin-glasses: Experimental facts, theoretical concepts, and open questions
,” Rev. Mod. Phys.
58
801
–976
(1986
);C. A.
Angell
, “Dynamic processes in ionic glasses
,” Chem. Rev. (Washington, D.C.)
90
, 523
–542
(1990
);U. T.
Höchli
, K.
Knorr
, and A.
Loidl
, “Orientational glasses
,” Adv. Phys.
39
, 405
–615
(1990
);W.
Götze
and L.
Sjogren
, “Relaxation processes in supercooled liquids
,” Rep. Prog. Phys.
55
, 241
–376
(1992
);J. P.
Bouchaud
, L.
Cugliandolo
, J.
Kurchan
, and M.
Mezard
, “Mode-coupling approximations, glass theory and disordered systems
,” Physica A
226
, 243
–273
(1996
).44.
P.
Hänggi
, P.
Talkner
, and M.
Borkovec
, “Reaction-rate theory: Fifty years after Kramers
,” Rev. Mod. Phys.
62
, 251
–342
(1990
).45.
E.
Pollak
and P.
Talkner
, “Reaction rate theory—What it was, where it is today and where is it going
,” Chaos
15
, 026116
(2005
).46.
L.
Gammaitoni
, P.
Hänggi
, P.
Jung
, and F.
Marchesoni
, “Stochastic resonance
,” Rev. Mod. Phys.
70
, 223
–288
(1998
).47.
K.
Wiesenfeld
and F.
Moss
, “Stochastic resonace and the benefits of noise—From ice ages to crayfish and squids
,” Nature (London)
373
, 33
–36
(1995
).48.
P.
Hänggi
, “Brownian rectifiers: How to convert Brownian motion into directed transport
,” Lect. Notes Phys.
476
, 294
–308
(1996
);P.
Reimann
and P.
Hänggi
, “Quantum features of Brownian motors and stochastic resonance
,” Chaos
8
, 629
–642
(1998
);
[PubMed]
R. D.
Astumian
and P.
Hänggi
, “Brownian motors
,” Phys. Today
55
(11), 33
–39
(2002
);P.
Reimann
, “Brownian motors: Noisy transport far from equilibrium
,” Phys. Rep.
361
, 57
–265
(2002
);H.
Linke
, “Ratchets and Brownian motors: Basics, experiments and applications
,” (special issue), Appl. Phys. A: Mater. Sci. Process.
75
, 167
–352
(2002
);P.
Hänggi
, F.
Marchesoni
, and F.
Nori
, “Brownian motors
,” Ann. Phys.
14
, 51
–70
(2005
).49.
D.
Babic
, C.
Schmitt
, and C.
Bechinger
, “Colloids a smodel systems for problems in statistical physics
,” Chaos
15
, 026114
(2005
).50.
J.
Casado-Pascual
, J.
Gomez-Ordonez
, and M.
Morillo
, “Stochastic Resonance: Theory and numerics
,” Chaos
15
, 026115
(2005
).51.
H.
Linke
, M. D.
Downton
, and M. J.
Zuckermann
, “Performance characteristics of Brownian motors
,” Chaos
15
, 026111
(2005
).52.
M.
Borromeo
and F.
Marchesoni
, “Asymmetric confinement in a noisy bistable device
,” Europhys. Lett.
68
, 783
–789
(2004
);M.
Borromeo
and F.
Marchesoni
,“Noise-assisted transport on symmetric periodic substrates
,” Chaos
15
, 026110
(2005
).53.
S.
Savel’ev
and F.
Nori
, “Controlling the motion of interacting particles: Homogeneous systems and binary mixtures
,” Chaos
15
, 026112
(2005
).54.
R.
Eichhorn
, P.
Reimann
, B.
Cleuren
, and C.
van den Broeck
, “Moving backward noisily
,” Chaos
15
, 026113
(2005
).55.
E.
Frey
and K.
Kroy
, “Brownian motion: Paradigm of soft matter and biological physics
,” Ann. Phys.
14
, 20
–50
(2005
).56.
N. V.
Brilliantov
and T.
Pöschel
, “Self-diffusion in granular gases; Green-Kubo versus Chapman-Enskog
,” Chaos
15
, 026108
(2005
).57.
F.
Marchesoni
, “Solitons in a random field of force: A Langevin equation approach
,” Phys. Lett. A
115
, 29
–32
(1986
);P.
Hänggi
, F.
Marchesoni
, and P.
Sodano
, “Nucleation of thermal sine-Gordon solitons: Effects of many-body interactions
,” Phys. Rev. Lett.
60
, 2563
–2566
(1988
);
[PubMed]
for an early review see:
J. P.
Hirth
and J.
Lothe
, Theory of Dislocations
(Wiley
, New York, 1982
).58.
M.
Zaks
, X.
Sailer
, L.
Schimansky-Geier
, and A.
Neiman
, “Noise-induced complexity: From subthreshold oscillations to spiking in coupled excitable systems
,” Chaos
15
, 026117
(2005
).59.
J. P.
Bouchaud
, “The Subtle nature of financial random walks
,” Chaos
15
, 026104
(2005
).© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.