Restitution, the characteristic shortening of action potential duration (APD) with increased heart rate, has been studied extensively because of its purported link to the onset of fibrillation. Restitution is often represented in the form of mapping models where APD is a function of previous diastolic intervals (DIs) and/or APDs, An+1=F(Dn,An,Dn1,An1,), where An+1 is the APD following a DI given by Dn. The number of variables previous to Dn determines the degree of memory in the mapping model. Recent experiments have shown that mapping models should contain at least three variables (Dn,An,Dn1) to reproduce a restitution portrait (RP) that is qualitatively similar to that seen experimentally, where the RP shows three different types of restitution curves (RCs) [dynamic, S1–S2, and constant-basic cycle length (BCL)] simultaneously. However, an interpretation of the different RCs has only been presented in detail for mapping models of one and two variables. Here we present an analysis of the different RCs in the RP for mapping models with an arbitrary amount of memory. We determine the number of variables necessary to represent the different RCs in the RP. We also present a graphical visualization of these RCs. Our analysis reveals that the dynamic and S1–S2 RCs reside on two-dimensional surfaces, and therefore provide limited information for mapping models with more than two variables. However, constant-BCL restitution is a feature of the RP that depends on higher dimensions and can possibly be used to determine a lower bound on the dimensionality of cardiac dynamics.

1.
M.
Courtemanche
,
R. J.
Ramirez
, and
S.
Nattel
, “
Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model
,”
Am. J. Physiol.
275
,
H301
H321
(
1998
).
2.
C.-H.
Luo
, and
Y.
Rudy
, “
A dynamic model of the cardiac ventricular action potential. i. simulations of ionic currents and concentration changes
,”
Circ. Res.
74
,
1071
1096
(
1994
).
3.
A.
Nygren
,
C.
Fiset
,
L.
Firek
,
J. W.
Clark
,
D. S.
Lindblad
,
R. B.
Clark
, and
W. R.
Giles
, “
Mathematical model of an adult himan atrial cell
,”
Circ. Res.
82
,
63
81
(
1998
).
4.
J. W.
Nolasco
, and
R. W.
Dahlen
, “
A graphic method for the study of alternation in cardiac action potentials
,”
J. Appl. Physiol.
25
,
191
196
(
1968
).
5.
M. R.
Guevara
,
G.
Ward
, and
L.
Glass
, “
Electrical alternans and period-doubling bifurcations
,” in
Proceedings of Computers in Cardiology
, edited by
K.
Ripley
(
IEEE Computer Society Press
, Washington, DC,
1984
), pp.
167
170
.
6.
V.
Elharrar
, and
B.
Surawicz
, “
Cycle length effect on restitution of action potential duration in dog cardiac fibers
,”
Am. J. Physiol.
244
,
H782
H792
(
1983
).
7.
M. L.
Koller
,
M. L.
Riccio
, and
R. F.
Gilmour
, Jr.
, “
Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation
,”
Am. J. Physiol.
44
,
H1635
H1642
(
1998
).
8.
E. G.
Tolkacheva
,
D. G.
Schaeffer
,
D. J.
Gauthier
, and
W.
Krassowska
, “
Condition for alternans and stability of the 1:1 response pattern in a ‘memory’ model of paced cardiac dynamics
,”
Phys. Rev. E
67
,
031904
(
2003
).
9.
S. S.
Kalb
,
H.
Dobrovolny
,
E. G.
Tolkacheva
,
S. F.
Idriss
,
W.
Krassowska
, and
D. J.
Gauthier
, “
The restitution portrait: A new method for investigating rate-dependent restitution
,”
J. Cardiovasc. Electrophysiol.
15
,
698
709
(
2004
).
10.
D. R.
Chialvo
,
D. C.
Michaels
, and
J.
Jalife
, “
Supernormal excitability as a mechanism of chaotic dynamics of activation in cardiac purkinje fibers
,”
Circ. Res.
66
,
525
545
(
1990
).
11.
R. M.
Gulrajani
, “
Computer simulation of action potential changes in cardiac tissue
,” in
Proceedings of Computers in Cardiology
, edited by
K.
Ripley
(
IEEE Computer Society Press
, Washington, DC,
1987
), pp.
629
632
.
12.
D. G.
Schaeffer
,
J. W.
Cain
,
D. J.
Gauthier
,
S. S.
Kalb
,
W.
Krassowska
,
R. A.
Oliver
, and
E. G.
Tolkacheva
, “
An ionically based mapping model with memory for cardiac restitution
,”arXiv: q-bio.QM/0407016,
2004
.
13.

Previously, Tolkacheva et al. (Ref. 14) referred to the slope of the CB RC (Sbcl) for the three-variable model of the form (2) as the slope formed by the CB–S responses. However, for the model (2), the CB–S responses do not fall on a single curve. Therefore, we clarify here that the slope (Sbcl) in Ref. 14 refers to the slope formed by those CB–S responses immediately following each of the perturbations.

14.
E. G.
Tolkacheva
,
M. M.
Romeo
,
M.
Guerraty
, and
D. J.
Gauthier
, “
Condition for alternans and its control in a two-dimensional mapping model of paced cardiac dynamics
,”
Phys. Rev. E
69
,
031904
(
2004
).
15.
M.
Courtemanche
,
L.
Glass
, and
J. P.
Keener
, “
Instabilities of a propagating pulse in a ring of excitable media
,”
Phys. Rev. Lett.
70
,
2182
–2185 (
1993
).
16.
A.
Vinet
and
F. A.
Roberge
, “
Excitability and repolarization in an ionic model of the cardiac cell membrane
,”
J. Theor. Biol.
170
,
183
199
(
1994
).
17.
A.
Vinet
, and
F. A.
Roberge
, “
Analysis of an interative difference equation model of the cardiac cell membrane
,”
J. Theor. Biol.
170
,
210
214
(
1994
).
18.
Z.
Qu
,
A.
Garfinkel
,
P.-S.
Chen
, and
J. N.
Weiss
, “
Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue
,”
Circulation
102
,
1664
1671
(
2000
).
19.
E. G.
Tolkacheva
,
D. G.
Schaeffer
,
D. J.
Gauthier
, and
C. C.
Mitchell
, “
Analysis of the Fenton–Karma model through an approximation by a one-dimensional map
,”
Chaos
12
,
1034
1042
(
2002
).
20.
R. F.
Gilmour
, Jr.
,
N. F.
Otani
, and
M. A.
Watanabe
, “
Memory and complex dynamics in cardiac Purkinje fibers
,”
Am. J. Physiol.
272
,
H1826
H1832
(
1997
).
21.
N. F.
Otani
, and
R. F.
Gilmour
, Jr.
, “
Memory models for the electrical properties of local cardiac systems
,”
J. Theor. Biol.
187
,
409
436
(
1997
).
22.
J. J.
Fox
,
E.
Bodenschatz
, and
R. F.
Gilmour
, Jr.
, “
Period-doubling instability and memory in cardiac tissue
,”
Phys. Rev. Lett.
89
,
138101
(
2002
).
23.
M. A.
Watanabe
, and
M. L.
Koller
, “
Mathematical analysis of dynamics of cardiac memory and accommodation
,”
Am. J. Physiol.
282
,
H1534
H1547
(
2002
).
24.
M. R.
Boyett
and
B. R.
Jewell
, “
Analysis of the effects of changes in rate and rhythm upon electrical activity in the heart
,”
Prog. Biophys. Mol. Biol.
36
,
1
52
(
1980
).
25.
S. F.
Idriss
and
A. M.
Pitruzzello
(perfused rabbit ventricular myocardium) (private communication).
26.
E. G.
Tolkacheva
(unpublished).
27.
M. R.
Franz
,
C. D.
Swerdlow
,
L. L.
Bing
, and
J.
Schaefer
, “
Cycle length dependence of human action potential duration in vivo
,”
J. Clin. Invest.
82
,
972
979
(
1988
).
28.
S. S.
Kalb
,
J. J.
Fox
,
E. G.
Tolkacheva
,
D. J.
Gauthier
, and
W.
Krassowska
, Parameter estimation in mapping models with memory (unpublished).
29.
R. A.
Oliver
,
A. W.
Wood
,
S. S.
Kalb
, and
W.
Krassowska
, “
Restitution portrait in Luo–Rudy-dynamic cardiac membrane model
,”
Proceedings of the 2004 BMES Annual Fall Meeting
(
Biomedical Engineering Society
, Philadelphia, PA,
2004
).
30.
T. J.
Hund
,
J. P.
Kucera
,
N. F.
Otani
, and
Y.
Rudy
, “
Ionic charge conservation and long-term steady-state in the Luo–Rudy dynamic cell model
,”
Biophys. J.
81
,
3324
3331
(
2001
).
31.
M. E.
Díaz
,
S. C.
O’Neill
, and
D. A.
Eisner
, “
Sarcoplamic reticulum calcium content fluctuation is the key to cardiac alternans
,”
Circ. Res.
94
,
650
656
(
2004
).
32.
E. J.
Pruvot
,
R. P.
Katra
,
D. S.
Rosenbaum
, and
K. R.
Laurita
, “
Role of calcium cycling versus restitution in the mechanism of repolarization alternans
,”
Circ. Res.
94
,
1083
1090
(
2004
).
33.
Y.
Shiferaw
,
D.
Sato
, and
A.
Karma
, “
Coupled dynamics of voltage and calcium in paced cardiac cells
,” arXiv: physics/0405048,
2004
.
34.
G. M.
Hall
,
S.
Bahar
, and
D. J.
Gauthier
, “
Prevalence of rate-dependent behaviors in cardiac muscle
,”
Phys. Rev. Lett.
82
,
2995
–2998 (
1999
).
35.
I.
Banville
, and
R. A.
Gray
, “
Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias
,”
J. Cardiovasc. Electrophysiol.
13
,
1141
1149
(
2002
).
You do not currently have access to this content.