The Fermi–Pasta–Ulam (FPU) problem is discussed in connection with its physical relevance, and it is shown how apparently there exist only two possibilities: either the FPU problem is just a curiosity, or it has a fundamental role for the foundations of physics, casting a new light on the relations between classical and quantum mechanics. To this end, a short review is given of the main conceptual proposals that have been advanced. Particular emphasis is given to the perspective of a metaequilibrium scenario, which appears to be the only possible one for the FPU paradox to survive in the physically relevant case of infinitely many particles.

1.
E.
Fermi
,
J.
Pasta
, and
S.
Ulam
, “
Studies of nonlinear problems
,” in
E. Fermi: Note e Memorie (Collected Papers)
(
Accademia Nazionale dei Lincei, Roma, and The University of Chicago Press
, Chicago,
1965
), Vol.
II
, No. 266, pp.
977
988
.
2.
A.
Carati
,
L.
Galgani
, and
A.
Giorgilli
, “
Dynamical systems and thermodynamics
,” in
Encyclopedia of Mathematical Physics
(
Elsevier
, Oxford, in press).
3.
E.
Fermi
, “
Beweiss das ein mechanisches Normalsystem im allgemeinen quasi-ergodisch ist
,”
Phys. Z.
24
,
261
(
1923
);
E.
Fermi
, “
Über die Existenz quasi-ergodischer systeme
,”
Phys. Z.
25
,
166
(
1924
);
E.
Fermi
, in
Note e Memorie (Collected Papers)
(
Accademia Nazionale dei Lincei, Roma, and The University of Chicago Press
, Chicago,
1965
), Vol.
I
, No. 11, pp.
79
87
.
4.
G.
Benettin
,
G.
Ferrari
,
L.
Galgani
, and
A.
Giorgilli
, “
An extension of the Poincaré–Fermi theorem on the nonexistence of invariant manifolds in nearly integrable Hamiltonian systems
,”
Nuovo Cimento Soc. Ital. Fis., B
72
,
137
(
1982
);
G.
Benettin
,
L.
Galgani
, and
A.
Giorgilli
, “
Poincaré’s non-existence theorem and classical perturbation theory in nearly-integrable Hamiltonian systems
,” in
Advances in Nonlinear Dynamics and Stochastic Processes
, edited by
R.
Livi
and
A.
Politi
(
World Scientific
, Singapore,
1985
).
5.
A. N.
Kolmogorov
, “
Preservation of conditionally periodic movements with small change in the Hamilton function
,”
Dokl. Akad. Nauk
98
,
527
(
1954
);
English translation in
G.
Casati
and
G.
Ford
,
Lecture Notes in Physics No. 93
(
Springer-Verlag
, Berlin,
1979
).
See also
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
, “
A proof of Kolmogorov’s theorem on invariant tori using canonical transformations defined by the Lie method
,”
Nuovo Cimento Soc. Ital. Fis., B
79
,
201
(
1984
).
6.
N. J.
Zabusky
and
M. D.
Kruskal
, “
Interaction of solitons in a collisionless plasma and the recurrence of initial states
,”
Phys. Rev. Lett.
15
,
240
(
1965
).
7.
F. M.
Izrailev
and
B. V.
Chirikov
, “
Statistical properties of a nonlinear string
,”
Sov. Phys. Dokl.
11
,
30
(
1966
).
8.
D. I.
Shepelyansky
, “
Low-energy chaos in the Fermi–Pasta–Ulam problem
,”
Nonlinearity
10
,
1331
(
1997
).
9.
P.
Bocchieri
,
A.
Scotti
,
B.
Bearzi
, and
A.
Loinger
, “
Anharmonic chain with Lennard-Jones interaction
,”
Phys. Rev. A
2
,
2013
(
1970
).
10.
L.
Galgani
and
A.
Scotti
, “
Planck-like distribution in classical nonlinear mechanics
,”
Phys. Rev. Lett.
28
,
1173
(
1972
);
L.
Galgani
and
A.
Scotti
, “
Recent progress in classical nonlinear dynamics
,”
Riv. Nuovo Cimento
2
,
189
(
1972
).
11.
C.
Cercignani
,
L.
Galgani
, and
A.
Scotti
, “
Zero-point energy in classical nonlinear mechanics
,”
Phys. Lett.
38A
,
403
(
1972
).
12.
C.
Cercignani
, “
On a nonquantum derivation of Planck’s distribution law
,”
Found. Phys. Lett.
11
,
189
(
1998
).
13.
E.
Fucito
,
F.
Marchesoni
,
E.
Marinari
,
G.
Parisi
,
L.
Peliti
,
S.
Ruffo
, and
A.
Vulpiani
, “
Approach to equilibrium in a chain of nonlinear oscillators
,”
J. Phys. (France)
43
,
707
(
1982
);
G.
Parisi
, “
On the approach to equilibrium of a Hamiltonian chain of anharmonic oscillators
,”
Europhys. Lett.
40
,
357
(
1997
).
See also
B.
Bassetti
,
P.
Butera
,
M.
Raciti
, and
M.
Sparpaglione
, “
Complex poles, spatial intermittencies, and energy transfer in a classical nonlinear string
,”
Phys. Rev. A
30
,
1033
(
1984
).
14.
R.
Livi
,
M.
Pettini
,
S.
Ruffo
,
M.
Sparpaglione
, and
A.
Vulpiani
, “
Equipartition threshold in nonlinear large Hamiltonian systems: The Fermi–Pasta–Ulam model
,”
Phys. Rev. A
31
,
1039
(
1985
).
15.
R.
Livi
,
M.
Pettini
,
S.
Ruffo
, and
A.
Vulpiani
, “
Further results on the equipartition threshold in large nonlinear Hamiltonian systems
,”
Phys. Rev. A
31
,
2740
(
1985
).
16.
H.
Kantz
, “
Vanishing stability thresholds in the thermodynamic limit of nonintegrable conservative systems
,”
Physica D
39
,
322
(
1989
);
H.
Kantz
,
R.
Livi
, and
S.
Ruffo
, “
Equipartition thresholds in chains of anharmonic oscillators
,”
J. Stat. Phys.
76
,
627
(
1994
);
P.
Poggi
,
S.
Ruffo
, and
H.
Kantz
, “
Shock waves and time scales to reach equipartition in the Fermi–Pasta–Ulam model
,”
Phys. Rev. E
52
,
307
(
1995
);
J.
De Luca
,
A. J.
Lichtenberg
, and
S.
Ruffo
, “
Energy transition and time scale to equipartition in the Fermi–Pasta–Ulam oscillator chain
,”
Phys. Rev. E
51
,
2877
(
1995
);
J.
De Luca
,
A. J.
Lichtenberg
, and
S.
Ruffo
, “
Universal evolution to equipartition in oscillator chains
,”
Phys. Rev. E
54
,
2329
(
1996
);
J.
De Luca
,
A. J.
Lichtenberg
, and
S.
Ruffo
, “
Finite time to equipartition in the thermodynamic limit
,”
Phys. Rev. E
60
,
3781
(
1999
);
J.
De Luca
and
A. J.
Lichtenberg
, “
Transitions and time scales to equipartition in oscillator chains: low-frequency initial conditions
,”
Phys. Rev. E
66
,
026206
(
2002
);
L.
Casetti
,
M.
Cerruti-Sola
,
M.
Pettini
, and
E. G. D.
Cohen
, “
The Fermi–Pasta–Ulam problem revisited: Stochasticity thresholds in nonlinear Hamiltonian systems
,”
Phys. Rev. E
55
,
6566
(
1997
);
L.
Casetti
,
M.
Cerruti-Sola
,
M.
Modugno
,
G.
Pettini
,
M.
Pettini
, and
R.
Gatto
, “
Dynamical and statistical properties of Hamiltonian systems with many degrees of freedom
,”
Riv. Nuovo Cimento
22
,
1
(
1999
);
L.
Caiani
,
L.
Casetti
, and
M.
Pettini
, “
Hamiltonian dynamics of the two-dimensional latticeφ4 model
,”
J. Phys. A
31
,
3357
(
1998
);
P. R.
Kramers
,
J. A.
Biello
, and
Y.
Lvov
, “
Stages of energy transfer in the FPU model
,”
Discrete Contin. Dyn. Syst., Ser. B
Suppl.
113
,
113
(
2003
);
P. R.
Kramers
,
J. A.
Biello
, and
Y.
Lvov
, “
Application of weak turbulence theory to FPU model. Dynamical systems and differential equations
,”
Discrete Contin. Dyn. Syst., Ser. B
Suppl.
113
,
482
(
2003
);
M.
Casartelli
and
S.
Sello
, “
Stochasticity and rate of energy exchanges in nonlinear chains
,”
Advances in Nonlinear Dynamics and Stochastic Processes
(
World Scientific
, Singapore,
1987
), Vol.
II
, pp.
113
125
;
C.
Alabiso
and
M.
Casartelli
, “
Quasi-harmonicity and power spectra in the FPU model
,”
J. Phys. A
33
,
831
(
2000
).
17.
L.
Casetti
,
R.
Livi
, and
M.
Pettini
, “
Gaussian model for chaotic instability of Hamiltonian flows
,”
Phys. Rev. Lett.
74
,
375
(
1995
).
18.
N. N.
Nekhoroshev
,
Russ. Math. Surveys
32
,
1
(
1977
);
N. N.
Nekhoroshev
, in
Topics in Modern Mathematics: Petrovskii Sem.
No. 5, edited by
O. A.
Oleinik
(
Consultants Bureau
, New York,
1985
).
See also
G.
Benettin
,
L.
Galgani
, and
A.
Giorgilli
, “
A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems
,”
Celest. Mech.
37
,
1
(
1985
);
A.
Giorgilli
, “
On the problem of stability for near to integrable Hamiltonian systems
,”
Proceedings of the International Congress of Mathematicians
, Berlin,
1998
, Vol.
III
, Documenta Mathematica, extra volume ICM
1998
, pp.
143
152
;
G.
Benettin
, “
The elements of Hamiltonian perturbation theory
,” in
Hamiltonian Dynamics and Frequency Analysis (Porquerolles School, 2001)
, edited by
D.
Benest
,
C.
Froeschlé
, and
E.
Lega
(
Taylor and Francis
, London, in press).
19.
G.
Benettin
,
L.
Galgani
, and
A.
Giorgilli
, “
Boltzmann’s ultraviolet cutoff and Nekhoroshev’s theorem on Arnold diffusion
,”
Nature (London)
311
,
444
(
1984
).
20.
L. D.
Landau
and
E.
Teller
, “
On the theory of sound dispersion
,”
Phys. Z. Sowjetunion
10
,
34
(
1936
);
also in the
Collected Papers of L. D. Landau
, edited by
D.
ter Haar
(
Pergamon
, Oxford,
1965
), pp.
147
153
;
G.
Benettin
,
L.
Galgani
, and
A.
Giorgilli
, “
Exponential law for the equipartition times among translational and vibrational degrees of freedom
,”
Phys. Lett. A
120
,
23
(
1987
);
O.
Baldan
and
G.
Benettin
, “
Classical ‘freezing’ of fast rotations. A numerical test of the Boltzmann–Jeans conjecture
,”
J. Stat. Phys.
62
,
201
(
1991
);
G.
Benettin
,
A.
Carati
, and
P.
Sempio
, “
On the Landau–Teller approximation for the energy exchanges with fast degrees of freedom
,”
J. Stat. Phys.
73
,
175
(
1993
);
G.
Benettin
,
A.
Carati
, and
G.
Gallavotti
, “
A rigorous implementation of the Landau–Teller approximation for adiabatic invariants
,”
Nonlinearity
10
,
479
(
1997
);
G.
Benettin
,
P.
Hjorth
, and
P.
Sempio
, “
Exponentially long equilibrium times in a one-dimensional collisional model of a classical gas
,”
J. Stat. Phys.
94
,
871
(
1999
);
A.
Carati
,
L.
Galgani
, and
B.
Pozzi
, “
Levy flights in the Landau–Teller model of molecular collisions
,”
Phys. Rev. Lett.
90
,
010601
(
2003
);
[PubMed]
A.
Carati
,
L.
Galgani
, and
B.
Pozzi
, “The problem of the rate of thermalization, and the relations between classical and quantum mechanics,” in
Mathematical Models and Methods for Smart Materials
, edited by
M.
Fabrizio
,
B.
Lazzari
, and
A.
Morro
(
World Scientific
, Singapore,
2002
).
21.
L.
Berchialla
,
L.
Galgani
, and
A.
Giorgilli
, “
Localization of energy in FPU chains
,”
Discrete Contin. Dyn. Syst., Ser. A
11
,
855
(
2004
);
L.
Berchialla
,
A.
Giorgilli
, and
S.
Paleari
, “
Exponentially long times to equipartition in the thermodynamic limit
,”
Phys. Lett. A
321
,
167
(
2004
).
22.
A.
Ponno
, “
Soliton theory and the Fermi–Pasta–Ulam problem in the thermodynamic limit
,”
Europhys. Lett.
64
,
606
(
2003
).
23.
D.
Bambusi
and
A.
Ponno
, “
KdV equation and energy sharing in FPU
,”
Chaos
15
,
015107
(
2005
) (this issue).
24.
R.
Livi
,
M.
Pettini
,
S.
Ruffo
,
M.
Sparpaglione
, and
A.
Vulpiani
, “
Relaxation to different stationary states in the Fermi–Pasta–Ulam model
,”
Phys. Rev. A
28
,
3544
(
1983
).
25.
A.
Ponno
, in
Proceeding of Cargese Summer School 2003: Chaotic Dynamics and Transport in Classical and Quantum Systems
(
Kluwer
, Dordrecht, in press).
26.
L.
Galgani
,
A.
Giorgilli
,
A.
Martinoli
, and
S.
Vanzini
, “
On the problem of energy equipartition for large systems of the Fermi–Pasta–Ulam type: analytical and numerical estimates
,”
Physica D
59
,
334
(
1992
).
27.
G.
Benettin
,
L.
Galgani
, and
A.
Giorgilli
, “
Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory, II
,”
Commun. Math. Phys.
121
,
557
(
1989
);
G.
Benettin
,
J.
Fröhlich
, and
A.
Giorgilli
, “
A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom
,”
Commun. Math. Phys.
119
,
95
(
1988
).
28.
A.
Carati
, “
The averaging principle in the thermodynamic limit
” (in preparation).
29.
R.
Livi
,
M.
Pettini
,
S.
Ruffo
, and
A.
Vulpiani
, “
Chaotic behavior in nonlinear Hamiltonian systems and equilibrium statistical mechanics
,”
J. Stat. Phys.
48
,
539
(
1987
).
30.
M.
Born
,
W.
Heisenberg
, and
P.
Jordan
, “
Zur Quantenmechanik
,”
Z. Phys.
35
,
557
(
1926
);
translated in
B. L.
van der Waerden
,
Sources of Quantum Mechanics
(
Dover
, New York,
1968
);
W.
Heisenberg
,
Die Physikalishchen Prinzipien der Quantentheorie
, (
V. S.
Hirzel
, Leipzig,
1930
), Chap. V, Sec. VII.
31.
A.
Perronace
and
A.
Tenenbaum
, “
Classical specific heat of an atomic lattice at low temperature, revisited
,”
Phys. Rev. E
57
,
100
(
1998
);
Erratum
,”
Phys. Rev. E
57
,
6215
(
1998
);
G.
Marcelli
and
A.
Tenenbaum
, “
Quantumlike short-time behavior of a classical crystal
,”
Phys. Rev. E
68
,
041112
(
2003
).
32.
A.
Carati
and
L.
Galgani
, “
On the specific heat of the Fermi–Pasta–Ulam systems
,”
J. Stat. Phys.
94
,
859
(
1999
);
A.
Carati
,
P.
Cipriani
, and
L.
Galgani
, “
On the definition of temperature in FPU systems
,”
J. Stat. Phys.
115
,
1119
(
2004
).
33.
S.
Lepri
,
R.
Livi
, and
A.
Politi
, “
Thermal conduction in classical low-dimensional lattices
,”
Phys. Rep.
377
,
1
(
2003
).
34.
A.
Carati
and
L.
Galgani
, “
Metastable states in the FPU system
,” cond-mat/0502174.
35.
A.
Carati
, “
Thermodynamics and time-averages
,”
Physica A
341
,
110
(
2005
).
36.
G.
Benettin
, “
Time-scale for energy equipartition in a 2-dimensional FPU model
,”
Chaos
15
,
015108
(
2005
) (this issue).
37.
A.
Carati
and
L.
Galgani
, “
Analog of Planck’s formula and effective temperature in classical statistical mechanics far from equilibrium
,”
Phys. Rev. E
61
,
4791
(
2000
);
A.
Carati
and
L.
Galgani
, “Einstein’s nonconventional conception of the photon, and the modern theory of dynamical systems,” in
Chance in Physics
,
Lecture Notes in Physics No. 574
, edited by
J.
Bricmont
 et al. (
Springer-Verlag
, Berlin,
2001
);
A.
Carati
and
L.
Galgani
, “
Planck’s formula and glassy behaviour in classical nonequilibrium statistical mechanics
,”
Physica A
280
,
105
(
2000
);
A.
Carati
and
L.
Galgani
, “
The theory of dynamical systems and the relations between classical and quantum mechanics
,”
Found. Phys.
31
,
69
(
2001
);
L.
Galgani
, “
Relaxation times and the foundations of classical statistical mechanics in the light of modern perturbation theory
,” in
Non-Linear Evolution and Chaotic Phenomena
,
NATO ASI Series R71B
, edited by
G.
Gallavotti
and
P. F.
Zweifel
(
Plenum
, New York,
1988
), Vol.
176
.
You do not currently have access to this content.