A nonlinear modeling approach is presented for the reconstruction of the synchronization structure in an asymmetric two-mass model from time series data. The asymmetric two-mass model describes a variety of normal and pathological human voices associated with synchronous and desynchronous oscillations of the two asymmetric vocal folds. Our technique recovers the synchronization diagram, which yields the regimes of synchronization as well as desynchronization, which are dependent upon the asymmetry parameter and the subglottal pressure. This allows the prediction of the regime of pathological phonation associated with desynchronization of the vocal folds from a few sets of recorded time series. It is shown that the modeling is quite effective when the time series data are chaotic and if they are taken from a regime of desynchronization. We discuss the applicability of the present approach as a diagnostic tool for voice pathologies.

1.
W.
Mende
,
H.
Herzel
, and
I. R.
Titze
, “
Bifurcations and chaos in newborn cries
,”
Phys. Lett. A
145
,
418
424
(
1990
).
2.
I. R.
Titze
,
R. J.
Baken
, and
H.
Herzel
, “
Evidence of chaos in vocal fold vibration
,” in
Vocal Fold Physiology
, edited by
I. R.
Titze
(
Singular
, San Diego,
1993
), pp.
143
188
.
3.
H.
Herzel
,
D.
Berry
,
I. R.
Titze
, and
S.
Saleh
, “
Analysis of vocal disorders with methods from nonlinear dynamics
,”
J. Speech Hear. Res.
37
,
1008
(
1994
).
4.
H.
Herzel
,
D.
Berry
,
I. R.
Titze
, and
I.
Steinecke
, “
Nonlinear dynamics of the voice: Signal analysis and biomechanical modeling
,”
Chaos
5
,
30
34
(
1995
).
5.
P.
Mergell
,
H.
Herzel
, and
I. R.
Titze
, “
Irregular vocal fold vibration: High-speed observation and modeling
,”
J. Acoust. Soc. Am.
108
,
2996
3002
(
2000
).
6.
I.
Wilden
,
H.
Herzel
,
G.
Peters
, and
G.
Tembrock
, “
Subharmonics, biphonation, and deterministic chaos in mammal vocalization
,”
Bioacoustics
9
,
171
–196 (
1998
).
7.
T.
Fitch
,
J.
Neubauer
, and
H.
Herzel
, “
Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production
,”
Anim. Behav.
63
,
407
418
(
2002
).
8.
B.
Townshend
, “
Nonlinear prediction of speech
,” in
Proceedings of the International Conference on Acoustics, Speech, and Signal Processing
(
IEEE
, New York,
1991
), pp.
425
428
.
9.
G.
Kubin
, “
Nonlinear processing of speech
,” in
Speech Coding and Synthesis
, edited by
W. B.
Kleijin
and
K. K.
Paliwal
(
Elsevier Science
, Amsterdam,
1995
), pp.
557
610
.
10.
A.
Kumar
and
S. K.
Mullick
, “
Nonlinear dynamical analysis of speech
,”
J. Acoust. Soc. Am.
100
,
615
629
(
1996
).
11.
S. N.
Narayanan
and
A. A.
Alwan
, “
A nonlinear dynamical systems analysis of fricative consonants
,”
J. Acoust. Soc. Am.
97
,
2511
2524
(
1995
).
12.
A.
Behrman
, “
Global and local dimensions of vocal dynamics
,”
J. Acoust. Soc. Am.
105
,
432
443
(
1999
).
13.
I.
Tokuda
,
T.
Miyano
, and
K.
Aihara
, “
Surrogate analysis for detecting nonlinear dynamics in normal vowels
,”
J. Acoust. Soc. Am.
110
,
3207
3217
(
2001
).
14.
I.
Steinecke
and
H.
Herzel
, “
Bifurcations in an asymmetric vocal-fold model
,”
J. Acoust. Soc. Am.
97
,
1878
1884
(
1995
).
15.
R.
Reuter
,
H.
Herzel
, and
R.
Orgelmeister
, “
Simulations of vocal fold vibrations with an analog circuit
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
9
,
1075
1088
(
1999
).
16.
J. J.
Jiang
and
Y.
Zhang
, “
Chaotic vibration induced by turbulent noise in a tow-mass model of vocal folds
,”
J. Acoust. Soc. Am.
112
,
2127
2133
(
2002
).
17.
M. S.
Fee
,
B.
Shraiman
,
B.
Pesaran
, and
P. P.
Mitra
, “
The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird
,”
Nature (London)
395
,
67
71
(
1998
).
18.
N. H.
Fletcher
, “
A class of chaotic bird calls?
J. Acoust. Soc. Am.
108
,
821
826
(
2000
).
19.
I.
Tokuda
,
T.
Riede
,
J.
Neubauer
,
M. J.
Owren
, and
H.
Herzel
, “
Nonlinear analysis of irregular animal vocalizations
,”
J. Acoust. Soc. Am.
111
,
2908
2919
(
2002
).
20.
I.
Tokuda
,
J.
Kurths
, and
E.
Rosa
, Jr.
, “
Learning phase synchronization from non-synchronized chaotic regime
,”
Phys. Rev. Lett.
88
,
014101
(
2002
).
21.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization—A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
, Cambridge,
2001
).
22.
Phase Synchronization and its Applications, edited by
J.
Kurths
, Special Issue in
Int. J. Bifurcation Chaos Appl. Sci. Eng.
10
,
2289
2649
(
2000
).
23.
I.
Tokuda
,
J.
Kurths
,
E.
Allaria
,
R.
Meucci
,
S.
Boccaletti
, and
F. T.
Arecchi
, “
Predicting phase synchronization in a spiking chaotic CO2 laser
,”
Phys. Rev. E
70
,
035204
R (
2004
).
24.
K.
Ishizaka
and
J. L.
Flanagan
, “
Synthesis of voiced sounds from a two-mass model of the vocal cords
,”
Bell Syst. Tech. J.
51
(
6
),
1233
1268
(
1972
).
25.
R.
Schwarz
,
U.
Hoppe
,
M.
Schuster
,
T.
Wurzbacher
,
U.
Eysholdt
, and
J.
Lohscheller
, “
Computation of driving parameters from endoscopic digital high-speed images in unilateral vocal fold paralysis
,” preprint.
26.
M.
Döllinger
,
U.
Hoppe
,
F.
Hettlich
,
J.
Lohscheller
,
S.
Schuberth
, and
U.
Eysholdt
, “
Vibration parameter extraction from endoscopic image series of the vocal folds
,”
IEEE Trans. Biomed. Eng.
49
,
773
781
(
2002
).
27.
S.
Kiritani
,
H.
Hirose
, and
H.
Imagawa
, “
High-speed digital imaging analysis of vocal fold vibration in diplophonia
,”
Speech Commun.
13
,
23
32
(
1993
).
28.
J.
Neubauer
,
P.
Mergell
,
U.
Eysholdt
, and
H.
Herzel
, “
Spatio-temporal analysis of irregular vocal fold oscillations: Biphonation due to desynchronization of spatial modes
,”
J. Acoust. Soc. Am.
110
,
3179
3192
(
2001
).
29.
T.
Wittenberg
, “
Automatic motion extraction from laryngeal kymograms
,” in
Advances in Quantitative Laryngoscopy
, edited by
T.
Wittenberg
,
P.
Mergell
,
M.
Tigges
, and
U.
Eysholdt
(
Verlag Abteilung Phoniatrie
, Göttingen,
1997
), pp.
21
28
.
30.
D. A.
Berry
,
H.
Herzel
,
I. R.
Titze
, and
B. H.
Story
, “
Bifurcations in excised larynx experiments
,”
J. Voice
10
,
129
138
(
1996
).
31.
J.
Horáček
,
J. G.
Švec
,
J.
Veselý
, and
E.
Vilkman
, “
Bifurcations in excised larynges caused by vocal fold elongation
,” in
Proceedings of the International Conference on Voice Physiology and Biomechanics
(
Marseille
,
2004
), pp.
87
89
.
32.
J.
Wendler
,
W.
Seidner
,
G.
Kittel
, and
U.
Eysholdt
,
Lehrbuch der Phoniatrie und Pädaudilogie
(
Georg Thieme Verlag Stuttgart
, New York,
1996
).
33.
B.
Cranen
and
L.
Boves
, “
Pressure measurements during speech production using semiconductor miniature pressure transducers: Impact on models for speech production
,”
J. Acoust. Soc. Am.
77
,
1543
1551
(
1985
).
34.
F.
Takens
, “
Detecting strange attractors in turbulence
,” in
Dynamical Systems and Turbulence
, Lecture Notes in Mathematics, edited by
D. A.
Range
and
L. S.
Young
(
Springer
, Berlin,
1981
), Vol.
898
, p.
366
381
.
35.
T.
Sauer
,
J. A.
York
, and
M.
Casdagli
, “
Embedology
,”
J. Stat. Phys.
65
,
579
616
(
1991
).
36.
J. D.
Farmer
and
J. J.
Sidorowich
, “
Predicting chaotic time series
,”
Phys. Rev. Lett.
59
,
845
–848 (
1987
).
37.
G.
Sugihara
and
R. M.
May
, “
Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series
,”
Nature (London)
344
,
734
741
(
1990
).
38.
J. P.
Crutchfield
and
B. S.
McNamara
, “
Equations of motion from a data series
,”
Complex Syst.
1
,
417
452
(
1987
).
39.
M.
Casdagli
, “
Nonlinear prediction of chaotic time series
,”
Physica D
35
,
335
356
(
1989
).
40.
A.
Lapedes
and
R.
Farber
, “
Nonlinear signal processing using neural networks: Prediction and system modeling
,”
Tech. Rep. Los Alamos National Lab.
LA-UR-87-2662 (
1987
).
41.
R.
Tokunaga
,
S.
Kajiwara
, and
T.
Matsumoto
, “
Reconstructing bifurcation diagrams only from time waveforms
,”
Physica D
79
,
348
360
(
1994
).
42.
I.
Tokuda
,
S.
Kajiwara
,
R.
Tokunaga
, and
T.
Matsumoto
, “
Recognizing chaotic time-waveforms in terms of a parametrized family of nonlinear predictors
,”
Physica D
95
,
380
395
(
1996
).
43.
K.
Judd
and
A. I.
Mees
, “
Modeling chaotic motions of a string from experimental data
,”
Physica D
92
,
221
236
(
1996
).
44.
E.
Bagarinao
,
K.
Pakdaman
,
T.
Nomura
, and
S.
Sato
, “
Reconstructing bifurcation diagrams from noisy time series using nonlinear autoregressive models
,”
Phys. Rev. E
60
,
1073
–1076 (
1999
).
45.
G.
Langer
and
U.
Parlitz
, “
Modeling parameter dependence from time series
,”
Phys. Rev. E
70
,
056217
(
2004
).
46.
D. E.
Rumelhart
,
J. L.
McClelland
, and the
PDP Research Group
,
Parallel Distributed Processing
(
MIT Press
, Cambridge,
1986
).
47.
K.
Funahashi
, “
On the approximate realization of continuous mappings by neural networks
,”
Neural Networks
2
,
183
192
(
1989
).
48.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
, Cambridge,
1997
).
49.
M. B.
Kennel
,
R.
Brown
, and
H. D. I.
Abarbanel
, “
Determining embedding dimension for phase-space reconstruction using a geometric construction
,”
Phys. Rev. A
45
,
3403
–3411 (
1992
).
50.
D. G.
Luenberger
,
Linear and Nonlinear Programming
(
Addison-Wesley
, Reading, MA,
1973
).
51.
S.
Amari
,
N.
Murata
,
K.-R.
Müller
,
M.
Finke
, and
H.
Yang
, “
Asymptotic statistical theory of overtraining and cross-validation
,”
IEEE Trans. Neural Netw.
8
,
985
996
(
1995
).
You do not currently have access to this content.