The mechanisms building the overall concentration distribution in a scalar mixture, and the drops in a spray, are examined successively. In both cases, the distributions belong to a unique family of distributions stable by self-convolution, the signature of the aggregation process from which they originate.

1.
H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1987).
2.
O.
Reynolds
,
Nature (London)
50
,
161
(
1894
).
3.
J. M.
Ottino
,
Phys. Fluids A
3
,
1417
(
1991
).
4.
S. S.
Girimaji
and
S. B.
Pope
,
J. Fluid Mech.
220
,
427
(
1990
).
5.
J.
Duplat
and
E.
Villermaux
,
Eur. Phys. J. B
18
,
353
(
2000
).
6.
P. E. Dimotakis and H. J. Catrakis, in Mixing: Chaos and Turbulence, edited by H. Chat, E. Villermaux, and J. M. Chomaz (Kluwer, Dordrecht/Plenum, New York, 1999).
7.
W. E.
Ranz
,
AIChE J.
25
,
41
(
1979
).
8.
F. E. Marble, in Chemical Reactivity in Liquids: Fundamental Aspects, edited by M. Moreau and P. Turq (Plenum, New York, 1988).
9.
C. J.
Allgre
and
D. L.
Turcotte
,
Nature (London)
323
,
123
(
1986
).
10.
J. M. Ottino, The Kinematics of Mixing: Stretching, Chaos, and Transport (Cambridge University Press, Cambridge, 1989).
11.
P.
Meunier
and
E.
Villermaux
,
J. Fluid Mech.
476
,
213
(
2003
).
12.
E.
Villermaux
and
H.
Rehab
,
J. Fluid Mech.
425
,
161
(
2000
).
13.
G. K.
Batchelor
,
Proc. R. Soc. London, Ser. A
213
,
349
(
1952
).
14.
This apparent power law is a transient effect reflecting the fact that the temporal window of the mixture’s evolution covers, at most, a few large scale turnover time γ−1∼L/u. Indeed, material lines increase like L/L0=exp(γt)=exp(ut/L)=exp(u/u×x/L) where x=ut is the distance from the injection point of the scalar blob in the medium advected at a velocity u. In the channel flow, the turbulence intensity is such that (Ref. 1) u/u≈0.08 and the downstream distances of observation in the present experiments are such that x/L<10 so that L/L0≈1+u/u×x/L=1+γt, realizing in practice an elongation linear in time, inducing, in this three dimensional flow, n∼t5/2. This behavior has thus to be understood as the birth of the ultimate exponential regime, but this slight difference, if any, has strictly no consequence on the mechanism building-up the concentration distribution P(C) which solely relies on random additions of concentration levels, independently of the rate at which these additions are made.
15.
W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1970).
16.
S. K. Friedlander, Smoken Dust, and Haze (Oxford University Press, New York, 2000).
17.
M.
von Smoluchowski
,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl.
92
,
129
(
1917
).
18.
R. L.
Curl
,
AIChE J.
9
,
175
(
1963
).
19.
A.
Pumir
,
B. I.
Shraiman
, and
E. D.
Siggia
,
Phys. Rev. Lett.
66
,
2984
(
1991
).
20.
S. B.
Pope
,
Prog. Energy Combust. Sci.
11
,
119
(
1985
).
21.
B.
Castaing
,
G.
Gunaratne
,
F.
Heslot
,
L.
Kadanoff
,
A.
Libchaber
,
S.
Thomae
,
X. Z.
Wu
,
S.
Zaleski
, and
G.
Zanetti
,
J. Fluid Mech.
204
,
1
(
1989
).
22.
Jayesh
and
Z.
Warhaft
,
Phys. Fluids A
4
,
2292
(
1992
).
23.
S. T.
Thoroddsen
and
C. W.
Van Atta
,
J. Fluid Mech.
244
,
547
(
1992
).
24.
B. S.
Williams
,
D.
Marteau
, and
J. P.
Gollub
,
Phys. Fluids
9
,
2061
(
1997
).
25.
M. C.
Jullien
,
P.
Castiglione
, and
P.
Tabeling
,
Phys. Rev. Lett.
85
,
3636
(
2000
).
26.
M.
Holzer
and
E. D.
Siggia
,
Phys. Fluids
6
,
1820
(
1994
).
27.
E.
Villermaux
,
C.
Innocenti
, and
J.
Duplat
,
Phys. Fluids
13
,
284
(
2001
).
28.
B. I.
Shraiman
and
E. D.
Siggia
,
Phys. Rev. E
49
,
2912
(
1994
).
29.
B. I.
Shraiman
and
E. D.
Siggia
,
Nature (London)
405
,
639
(
2000
).
30.
G.
Falkovich
,
K.
Gawedzki
, and
M.
Vergassola
,
Rev. Mod. Phys.
73
,
913
(
2001
).
31.
E.
Balkovsky
and
A.
Fouxon
,
Phys. Rev. E
60
,
4164
(
1999
).
32.
L. Bayvel and Z. Orzechowski, Liquid Atomization (Taylor & Francis, London, 1993).
33.
A. H. Lefebvre, Atom and Sprays (Hemisphere, New York, 1989).
34.
E. L.
Andreas
,
M.
Pattison
, and
S. E.
Belcher
,
J. Phys. Res.
106
,
7157
(
2001
).
35.
M.
Anguelova
and
R. P.
Barber
,
J. Phys. Oceanogr.
29
,
1156
(
1999
).
36.
S. Twomey, Atmospheric Aerosols (Elsevier, New York, 1977).
37.
B. J. Mason, The Physics of Clouds (Clarendon, Oxford, 1971).
38.
H.
Simmons
,
J. Eng. Power
7
,
309
(
1977
).
39.
H.
Simmons
,
J. Eng. Power
7
,
315
(
1977
).
40.
E. A.
Novikov
and
D. G.
Dommermuth
,
Phys. Rev. E
56
,
5479
(
1997
).
41.
A. N.
Kolmogorov
,
Dokl. Akad. Nauk SSSR
66
,
825
(
1949
).
42.
M. S.
Longuet-Higgins
,
Proc. R. Soc. London, Ser. A
439
,
611
(
1992
).
43.
R. D.
Cohen
,
Proc. R. Soc. London, Ser. A
435
,
483
(
1991
).
44.
J. Mayer and M. Mayer, Statistical Mechanics (Wiley, New York, 1966).
45.
E.
Villermaux
,
J. Propul. Power
14
,
807
(
1998
).
46.
P. Marmottant and E. Villermaux (in preparation).
47.
S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961).
48.
L.
Rayleigh
,
Proc. London Math. Soc.
11
,
57
(
1880
).
49.
L.
Rayleigh
,
Proc. R. Soc. London
XIV
,
170
(
1883
).
50.
G. I.
Taylor
,
Proc. R. Soc. London, Ser. A
CCI
,
192
(
1950
).
51.
J. Plateau, Statique Exprimentale et Thorique des Liquides Soumis Aux Seules Forces Molculaires (Gauthier Villars, Paris, 1873).
52.
L.
Rayleigh
,
Proc. London Math. Soc.
10
,
4
(
1879
).
53.
J.
Eggers
,
Rev. Mod. Phys.
69
,
865
(
1997
).
54.
A.
Ranger
and
J.
Nicholls
,
AIAA J.
7
,
285
(
1969
).
55.
X.
Shi
,
M.
Brenner
, and
S.
Nagel
,
Science
265
,
219
(
1994
).
56.
S.
Thoroddsen
and
K.
Takehara
,
Phys. Fluids
12
,
1265
(
2000
).
57.
I.
Frankel
and
D.
Weihs
,
J. Fluid Mech.
155
,
289
(
1985
).
58.
S. K. Friedlander, Smoke, Dust, and Haze (Oxford University Press, Oxford, 2000).
59.
M.
von Smoluchowski
,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl.
92
,
129
(
1917
).
60.
W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1971).
61.
N.
Bohr
,
Nature (London)
143
,
330
(
1939
).
62.
T.
Low
and
R.
List
,
J. Atmos. Sci.
39
,
1591
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.