Traditional noise-filtering techniques are known to significantly alter features of chaotic data. In this paper, we present a noncausal topology-based filtering method for continuous-time dynamical systems that is effective in removing additive, uncorrelated noise from time-series data. Signal-to-noise ratios and Lyapunov exponent estimates are dramatically improved following the removal of the identified noisy points.

1.
Abarbanel, H., Analysis of Observed Chaotic Data (Springer, New York, 1995).
2.
Auerbach
,
D.
,
Cvitanovic
,
P.
,
Eckmann
,
J. -P.
,
Gunaratne
,
G.
, and
Procaccia
,
I.
, “
Exploring chaotic motion through periodic orbits
,”
Phys. Rev. Lett.
58
,
2387
2389
(
1987
).
3.
Ballard, D. and Brown, C., Computer Vision (Prentice–Hall, Englewood Cliffs, NJ, 1982).
4.
Bröcker
,
J.
and
Parlitz
,
U.
, “
Efficient noncausal noise reduction for deterministic time series
,”
Chaos
11
,
319
326
(
2001
).
5.
Brown
,
R.
, “
Calculating Lyapunov exponents for short and/or noisy data sets
,”
Phys. Rev. E
47
,
3962
3969
(
1993
).
6.
Bryant
,
P.
and
Brown
,
R.
, “
Lyapunov exponents from observed time series
,”
Phys. Rev. Lett.
65
,
1523
1526
(
1990
).
7.
Cawley
,
R.
and
Hsu
,
G.
, “
Local-geometric-projection method for noise reduction in chaotic maps and flows
,”
Phys. Rev. A
46
,
3057
3082
(
1992a
).
8.
Cawley
,
R.
and
Hsu
,
G.
, “
SNR performance of a noise reduction algorithm applied to coarsely sampled chaotic data
,”
Phys. Lett. A
166
,
188
196
(
1992b
).
9.
Clark
,
R.
and
Miller
,
W.
, “
Computer based data analysis systems at Argonne
,”
Methods Comput. Phys.
5
,
47
98
(
1966
).
10.
Cormen, T., Leiserson, C., Rivest, R., and Stein, C., Introduction to Algorithms (MIT Press, Cambridge, 2001), pp. 570–573.
11.
Davies
,
M.
, “
Noise reduction by gradient descent
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
3
,
113
118
(
1992
).
12.
Duda, R. and Hart, P., Pattern Classification (Wiley, New York, 1973).
13.
Farmer, J. and Sidorowich, J., “Exploiting chaos to predict the future and reduce noise,” in Evolution, Learning, and Cognition (World Scientific, Singapore, 1988).
14.
Gunaratne
,
G.
,
Linsay
,
P.
, and
Vinson
,
M.
, “
Chaos beyond onset: A comparison of theory and experiment
,”
Phys. Rev. Lett.
63
,
1
(
1989
).
15.
Hammel
,
M.
, “
A noise reduction method for chaotic systems
,”
Phys. Lett. A
148
,
421
428
(
1990
).
16.
Hegger
,
R.
and
Schreiber
,
T.
, “
A noise reduction method for multivariate time series
,”
Phys. Lett. A
113
,
305
(
1992
).
17.
Kostelich
,
E.
, “
Problems in estimating dynamics from data
,”
Physica D
58
,
138
152
(
1992
).
18.
Kostelich
,
E.
and
Yorke
,
J.
, “
Noise reduction in dynamical systems
,”
Phys. Rev. A
38
,
1649
1652
(
1988
).
19.
Landa
,
P.
and
Rozenblum
,
M.
, “
A comparison of methods for constructing a phase space and determining the dimension of an attractor
,”
Sov. Phys. Tech. Phys.
34
,
1229
1232
(
1989
).
20.
Marteau
,
P.
and
Abarbanel
,
H.
, “
Noise reduction in chaotic time series using scaled probabilistic methods
,”
J. Nonlinear Sci.
1
,
313
343
(
1991
).
21.
Mees, A., “Tesselations and dynamical systems,” in Nonlinear Modeling and Forecasting, edited by M. Casdagli and S. Eubank (Addison-Wesley, Reading, 1992).
22.
Mindlin
,
G.
and
Gilmore
,
R.
, “
Topological analysis and synthesis of chaotic time series data
,”
Physica D
58
,
229
242
(
1992
).
23.
Mischaikow
,
K.
,
Mrozek
,
M.
,
Reiss
,
J.
, and
Szymczak
,
A.
, “
Construction of symbolic dynamics from experimental time series
,”
Phys. Rev. Lett.
82
,
1144
1147
(
1999
).
24.
Muldoon
,
M.
,
MacKay
,
R.
,
Huke
,
J.
, and
Broomhead
,
D.
, “
Topology from time series
,”
Physica D
65
,
1
16
(
1993
).
25.
Ortega
,
G.
, “
A new method to detect hidden frequencies in chaotic time series
,”
Phys. Lett. A
209
,
351
355
(
1995
).
26.
Penrose
,
M.
, and
Yukich
,
J.
, “Weak laws of large numbers in geometric probability,” (preprint);
Penrose
,
M.
, and
Yukich
,
J.
, math.PR/0107148,
2001
.
27.
Piccardi
,
C.
, “
On taming chaos using LTI filters
,”
IEEE Trans. Circuits and Systems
43
,
431
432
(
1996
).
28.
Pikovsky
,
A. S.
, “
Noise filtering in the discrete time dynamical systems
,”
Sov. J. Commun. Technol. Electron.
31
,
911
914
(
1986
).
29.
Robins, V., “Computational topology at multiple resolutions,” Ph.D. thesis, University of Colorado, June 2000.
30.
Robins
,
V.
,
Meiss
,
J.
, and
Bradley
,
E.
, “
Computing connectedness: An exercise in computational topology
,”
Nonlinearity
11
,
913
922
(
1998
).
31.
Robins
,
V.
,
Meiss
,
J.
, and
Bradley
,
E.
, “
Computing connectedness: Disconnectedness and discreteness
,”
Physica D
139
,
276
300
(
2000
).
32.
Sauer
,
T.
, “
A noise reduction method for signals from nonlinear systems
,”
Physica D
58
,
193
201
(
1992
).
33.
Sauer
,
T.
,
Yorke
,
J.
, and
Casdagli
,
M.
, “
Embedology
,”
J. Stat. Phys.
65
,
579
616
(
1991
).
34.
Schreiber
,
T.
, “
Extremely simple nonlinear noise-reduction method
,”
Phys. Rev. E
47
,
2401
2404
(
1993
).
35.
Schreiber
,
T.
and
Grassberger
,
P.
, “
A simple noise-reduction method for real data
,”
Phys. Lett. A
160
,
411
418
(
1991
).
36.
Theiler
,
J.
and
Eubank
,
S.
, “
Don’t bleach chaotic data
,”
Chaos
3
,
771
782
(
1993
).
37.
Wolf, A., “Quantifying chaos with Lyapunov exponents,” in Chaos (Princeton University Press, Princeton, 1986), pp. 273–290.
38.
Yip, K., KAM: A System for Intelligently Guiding Numerical Experimentation by Computer, Artificial Intelligence Series (MIT Press, Cambridge, 1991).
39.
Zahn
,
C.
, “
Graph-theoretical methods for detecting and describing Gestalt clusters
,”
IEEE Trans. Comput.
C-20
,
68
86
(
1971
).
This content is only available via PDF.
You do not currently have access to this content.