Traditional noise-filtering techniques are known to significantly alter features of chaotic data. In this paper, we present a noncausal topology-based filtering method for continuous-time dynamical systems that is effective in removing additive, uncorrelated noise from time-series data. Signal-to-noise ratios and Lyapunov exponent estimates are dramatically improved following the removal of the identified noisy points.
REFERENCES
1.
Abarbanel, H., Analysis of Observed Chaotic Data (Springer, New York, 1995).
2.
Auerbach
, D.
, Cvitanovic
, P.
, Eckmann
, J. -P.
, Gunaratne
, G.
, and Procaccia
, I.
, “Exploring chaotic motion through periodic orbits
,” Phys. Rev. Lett.
58
, 2387
–2389
(1987
).3.
Ballard, D. and Brown, C., Computer Vision (Prentice–Hall, Englewood Cliffs, NJ, 1982).
4.
Bröcker
, J.
and Parlitz
, U.
, “Efficient noncausal noise reduction for deterministic time series
,” Chaos
11
, 319
–326
(2001
).5.
Brown
, R.
, “Calculating Lyapunov exponents for short and/or noisy data sets
,” Phys. Rev. E
47
, 3962
–3969
(1993
).6.
Bryant
, P.
and Brown
, R.
, “Lyapunov exponents from observed time series
,” Phys. Rev. Lett.
65
, 1523
–1526
(1990
).7.
Cawley
, R.
and Hsu
, G.
, “Local-geometric-projection method for noise reduction in chaotic maps and flows
,” Phys. Rev. A
46
, 3057
–3082
(1992a
).8.
Cawley
, R.
and Hsu
, G.
, “SNR performance of a noise reduction algorithm applied to coarsely sampled chaotic data
,” Phys. Lett. A
166
, 188
–196
(1992b
).9.
Clark
, R.
and Miller
, W.
, “Computer based data analysis systems at Argonne
,” Methods Comput. Phys.
5
, 47
–98
(1966
).10.
Cormen, T., Leiserson, C., Rivest, R., and Stein, C., Introduction to Algorithms (MIT Press, Cambridge, 2001), pp. 570–573.
11.
Davies
, M.
, “Noise reduction by gradient descent
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
3
, 113
–118
(1992
).12.
Duda, R. and Hart, P., Pattern Classification (Wiley, New York, 1973).
13.
Farmer, J. and Sidorowich, J., “Exploiting chaos to predict the future and reduce noise,” in Evolution, Learning, and Cognition (World Scientific, Singapore, 1988).
14.
Gunaratne
, G.
, Linsay
, P.
, and Vinson
, M.
, “Chaos beyond onset: A comparison of theory and experiment
,” Phys. Rev. Lett.
63
, 1
(1989
).15.
Hammel
, M.
, “A noise reduction method for chaotic systems
,” Phys. Lett. A
148
, 421
–428
(1990
).16.
Hegger
, R.
and Schreiber
, T.
, “A noise reduction method for multivariate time series
,” Phys. Lett. A
113
, 305
(1992
).17.
Kostelich
, E.
, “Problems in estimating dynamics from data
,” Physica D
58
, 138
–152
(1992
).18.
Kostelich
, E.
and Yorke
, J.
, “Noise reduction in dynamical systems
,” Phys. Rev. A
38
, 1649
–1652
(1988
).19.
Landa
, P.
and Rozenblum
, M.
, “A comparison of methods for constructing a phase space and determining the dimension of an attractor
,” Sov. Phys. Tech. Phys.
34
, 1229
–1232
(1989
).20.
Marteau
, P.
and Abarbanel
, H.
, “Noise reduction in chaotic time series using scaled probabilistic methods
,” J. Nonlinear Sci.
1
, 313
–343
(1991
).21.
Mees, A., “Tesselations and dynamical systems,” in Nonlinear Modeling and Forecasting, edited by M. Casdagli and S. Eubank (Addison-Wesley, Reading, 1992).
22.
Mindlin
, G.
and Gilmore
, R.
, “Topological analysis and synthesis of chaotic time series data
,” Physica D
58
, 229
–242
(1992
).23.
Mischaikow
, K.
, Mrozek
, M.
, Reiss
, J.
, and Szymczak
, A.
, “Construction of symbolic dynamics from experimental time series
,” Phys. Rev. Lett.
82
, 1144
–1147
(1999
).24.
Muldoon
, M.
, MacKay
, R.
, Huke
, J.
, and Broomhead
, D.
, “Topology from time series
,” Physica D
65
, 1
–16
(1993
).25.
Ortega
, G.
, “A new method to detect hidden frequencies in chaotic time series
,” Phys. Lett. A
209
, 351
–355
(1995
).26.
Penrose
, M.
, and Yukich
, J.
, “Weak laws of large numbers in geometric probability,” (preprint);27.
Piccardi
, C.
, “On taming chaos using LTI filters
,” IEEE Trans. Circuits and Systems
43
, 431
–432
(1996
).28.
Pikovsky
, A. S.
, “Noise filtering in the discrete time dynamical systems
,” Sov. J. Commun. Technol. Electron.
31
, 911
–914
(1986
).29.
Robins, V., “Computational topology at multiple resolutions,” Ph.D. thesis, University of Colorado, June 2000.
30.
Robins
, V.
, Meiss
, J.
, and Bradley
, E.
, “Computing connectedness: An exercise in computational topology
,” Nonlinearity
11
, 913
–922
(1998
).31.
Robins
, V.
, Meiss
, J.
, and Bradley
, E.
, “Computing connectedness: Disconnectedness and discreteness
,” Physica D
139
, 276
–300
(2000
).32.
Sauer
, T.
, “A noise reduction method for signals from nonlinear systems
,” Physica D
58
, 193
–201
(1992
).33.
Sauer
, T.
, Yorke
, J.
, and Casdagli
, M.
, “Embedology
,” J. Stat. Phys.
65
, 579
–616
(1991
).34.
Schreiber
, T.
, “Extremely simple nonlinear noise-reduction method
,” Phys. Rev. E
47
, 2401
–2404
(1993
).35.
Schreiber
, T.
and Grassberger
, P.
, “A simple noise-reduction method for real data
,” Phys. Lett. A
160
, 411
–418
(1991
).36.
Theiler
, J.
and Eubank
, S.
, “Don’t bleach chaotic data
,” Chaos
3
, 771
–782
(1993
).37.
Wolf, A., “Quantifying chaos with Lyapunov exponents,” in Chaos (Princeton University Press, Princeton, 1986), pp. 273–290.
38.
Yip, K., KAM: A System for Intelligently Guiding Numerical Experimentation by Computer, Artificial Intelligence Series (MIT Press, Cambridge, 1991).
39.
Zahn
, C.
, “Graph-theoretical methods for detecting and describing Gestalt clusters
,” IEEE Trans. Comput.
C-20
, 68
–86
(1971
).
This content is only available via PDF.
© 2004 American Institute of Physics.
2004
American Institute of Physics
You do not currently have access to this content.