Unidirectionally coupled systems (x,y)⟼(f(x),g(x,y)) occur naturally, and are used as tractable models of networks with complex interactions. We analyze the structure and bifurcations of attractors in the case the driving system is not invertible, and the response system is dissipative. We discuss both cases in which the driving system is a map, and a strongly dissipative flow. Although this problem was originally motivated by examples of nonlinear synchrony, we show that the ideas presented can be used more generally to study the structure of attractors, and examine interactions between coupled systems.

1.
S.
Boccaletti
,
J.
Kurths
,
G.
Osipov
,
D. L.
Valladares
, and
C. S.
Zhou
, “
The synchronization of chaotic systems
,”
Phys. Rep.
366
,
1
101
(
2002
).
2.
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Science (Cambridge University Press, Cambridge, 2003).
3.
S. Strogatz, Sync: The Emerging Science of Spontaneous Order (Hyperion, New York, 2003).
4.
S.
Boccaletti
,
L.
Pecora
, and
A.
Pelaez
, “
Unifying framework for synchronization of coupled dynamical systems
,”
Phys. Rev. E
63
,
066219
(
2001
).
5.
N. F.
Rulkov
,
M.
Suschik
,
L. S.
Tsimring
, and
H.
Abarbanel
, “
Generalized synchronization of chaos in directionally coupled chaotic systems
,”
Phys. Rev. E
51
,
980
994
(
1995
).
6.
V.
Afraimovich
,
A.
Cordonet
, and
N.
Rulkov
, “
Generalized synchronization of chaos in noninvertible maps
,”
Phys. Rev. E
66
,
016208
(
2002
).
7.
E.
Barreto
,
K.
Josić
,
C. J.
Morales
,
E.
Sander
, and
P.
So
, “
The geometry of chaos synchronization
,”
Chaos
13
,
151
164
(
2003
).
8.
J. C.
Robinson
, “
Stability of random attractors under perturbation and approximation
,”
J. Diff. Eqns.
186
,
652
669
(
2002
).
9.
P.
So
,
E.
Barreto
,
K.
Josić
,
E.
Sander
, and
S. J.
Schiff
, “
Limits to the experimental detection of nonlinear synchrony
,”
Phys. Rev. E
65
,
046225
(
2002
).
10.
D.
He
,
Z.
Zheng
, and
L.
Stone
, “
Detecting generalized synchrony: An improved approach
,”
Phys. Rev. E
67
,
026223
(
2003
).
11.
K.
Josić
, “
Synchronization of chaotic systems and invariant manifolds
,”
Nonlinearity
13
,
1321
1336
(
2000
).
12.
C. E. Frouzakis, R. A. Adomaitis, I. G. Kevrekidis, M. P. Golden, and B. E. Ydstie, “The structure of basin boundaries in a simple adaptive control system,” in Chaotic Dynamics (Patras, 1991), Vol. 298 of NATO Adv. Sci. Inst. Ser. B Phys. (Plenum, New York, 1992), pp. 195–210.
13.
E. N.
Lorenz
, “
Computational chaos—A prelude to computational instability
,”
Physica D
35
,
299
317
(
1989
).
14.
N.
Rulkov
and
V.
Afraimovich
, “
Detectability of non-differentiable generalized synchrony
,”
Phys. Rev. E
67
,
066218
(
2003
).
15.
N.
Rulkov
,
V.
Afraimovich
,
L.
Lewis
,
J.-R.
Chazottes
, and
A.
Cordonet
, “
Multivalued mappings in generalized chaos synchronization
,”
Phys. Rev. E
64
,
016217
(
2001
).
16.
B. R.
Hunt
,
E.
Ott
, and
E.
Rosa
, “
Sporadically fractal basin boundaries of chaotic systems
,”
Phys. Rev. Lett.
82
,
3597
3600
(
1999
).
17.
J.
Guckenheimer
and
R. F.
Williams
, “
Structural stability of Lorenz attractors
,”
Inst. Hautes Études Sci. Publ. Math.
50
,
59
72
(
1979
).
18.
W.
Tucker
, “
A rigorous ODE solver and Smale’s 14th problem
,”
Found. Comput. Math.
2
,
53
117
(
2002
).
19.
E.
Lorenz
, “
Deterministic nonperiodic flows
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
20.
E. Sander, E. Barreto, K. Josic, and P. So, “Synchronization sets in drive-response systems,” in SIAM DSWeb Online Picture Gallery (http://www.dynamicalsystems.org/pi/sm/detail?item=35, 2003).
21.
N.
Fenichel
, “
Persistence and smoothness of invariant manifolds for flows
,”
Indiana Univ. Math. J.
21
,
193
226
(
1971/1972
).
22.
M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583 (Springer, Berlin, 1977).
23.
J.
Stark
, “
Regularity of invariant graphs for forced systems
,”
Ergod. Theory Dyn. Syst.
19
,
155
199
(
1999
).
24.
S. B. Nadler, Jr., Continuum Theory, An Introduction, Vol. 158 of Monographs and Textbooks in Pure and Applied Mathematics (Dekker, New York, 1992).
25.
M.
Barge
and
W. T.
Ingram
, “
Inverse limits on [0, 1] using logistic bonding maps
,”
Topology Appl.
72
,
159
172
(
1996
).
26.
V.
Afraimovich
,
J.-R.
Chazottes
, and
A.
Cordonet
, “
Synchronization in directionally coupled systems: Some rigorous results
,”
Discrete Contin. Dyn. Syst. B
1
,
421
442
(
2001
).
27.
M.
Barge
,
K.
Brucks
, and
B.
Diamond
, “
Self-similarity in inverse limit spaces of the tent family
,”
Proc. Am. Math. Soc.
124
,
3563
3570
(
1996
).
28.
P.
Minc
and
W. R. R.
Transue
, “
A transitive map on [0, 1] whose inverse limit is the pseudoarc
,”
Proc. Am. Math. Soc.
111
,
1165
1170
(
1991
).
29.
D.
Hadjiloucas
,
M. J.
Nicol
, and
C. P.
Walkden
, “
Regularity of invariant graphs over hyperbolic systems
,”
Ergod. Theory Dyn. Syst.
22
,
469
482
(
2002
).
30.
W. S.
Mahavier
, “
Arcs in inverse limits on [0, 1] with only one bonding map
,”
Proc. Am. Math. Soc.
21
,
587
590
(
1969
).
31.
G. W.
Henderson
, “
The pseudo-arc as an inverse limit with one binding map
,”
Duke Math. J.
31
,
421
425
(
1964
).
32.
J.
Chubb
,
E.
Barreto
,
P.
So
, and
B.
Gluckman
, “
The breakdown of synchronization in systems of nonidentical chaotic oscillators: Theory and experiment
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
11
,
2705
2713
(
2001
).
33.
K. Josic and E. Sander, “Noisy synchronization sets for noninvertible drives” (http://math.gmu.edu/∼sander/research/josicsander/).
34.
R. F.
Williams
, “
One-dimensional non-wandering sets
,”
Topology
6
,
473
487
(
1967
).
This content is only available via PDF.
You do not currently have access to this content.