Unidirectionally coupled systems occur naturally, and are used as tractable models of networks with complex interactions. We analyze the structure and bifurcations of attractors in the case the driving system is not invertible, and the response system is dissipative. We discuss both cases in which the driving system is a map, and a strongly dissipative flow. Although this problem was originally motivated by examples of nonlinear synchrony, we show that the ideas presented can be used more generally to study the structure of attractors, and examine interactions between coupled systems.
REFERENCES
1.
S.
Boccaletti
, J.
Kurths
, G.
Osipov
, D. L.
Valladares
, and C. S.
Zhou
, “The synchronization of chaotic systems
,” Phys. Rep.
366
, 1
–101
(2002
).2.
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Science (Cambridge University Press, Cambridge, 2003).
3.
S. Strogatz, Sync: The Emerging Science of Spontaneous Order (Hyperion, New York, 2003).
4.
S.
Boccaletti
, L.
Pecora
, and A.
Pelaez
, “Unifying framework for synchronization of coupled dynamical systems
,” Phys. Rev. E
63
, 066219
(2001
).5.
N. F.
Rulkov
, M.
Suschik
, L. S.
Tsimring
, and H.
Abarbanel
, “Generalized synchronization of chaos in directionally coupled chaotic systems
,” Phys. Rev. E
51
, 980
–994
(1995
).6.
V.
Afraimovich
, A.
Cordonet
, and N.
Rulkov
, “Generalized synchronization of chaos in noninvertible maps
,” Phys. Rev. E
66
, 016208
(2002
).7.
E.
Barreto
, K.
Josić
, C. J.
Morales
, E.
Sander
, and P.
So
, “The geometry of chaos synchronization
,” Chaos
13
, 151
–164
(2003
).8.
J. C.
Robinson
, “Stability of random attractors under perturbation and approximation
,” J. Diff. Eqns.
186
, 652
–669
(2002
).9.
P.
So
, E.
Barreto
, K.
Josić
, E.
Sander
, and S. J.
Schiff
, “Limits to the experimental detection of nonlinear synchrony
,” Phys. Rev. E
65
, 046225
(2002
).10.
D.
He
, Z.
Zheng
, and L.
Stone
, “Detecting generalized synchrony: An improved approach
,” Phys. Rev. E
67
, 026223
(2003
).11.
K.
Josić
, “Synchronization of chaotic systems and invariant manifolds
,” Nonlinearity
13
, 1321
–1336
(2000
).12.
C. E. Frouzakis, R. A. Adomaitis, I. G. Kevrekidis, M. P. Golden, and B. E. Ydstie, “The structure of basin boundaries in a simple adaptive control system,” in Chaotic Dynamics (Patras, 1991), Vol. 298 of NATO Adv. Sci. Inst. Ser. B Phys. (Plenum, New York, 1992), pp. 195–210.
13.
E. N.
Lorenz
, “Computational chaos—A prelude to computational instability
,” Physica D
35
, 299
–317
(1989
).14.
N.
Rulkov
and V.
Afraimovich
, “Detectability of non-differentiable generalized synchrony
,” Phys. Rev. E
67
, 066218
(2003
).15.
N.
Rulkov
, V.
Afraimovich
, L.
Lewis
, J.-R.
Chazottes
, and A.
Cordonet
, “Multivalued mappings in generalized chaos synchronization
,” Phys. Rev. E
64
, 016217
(2001
).16.
B. R.
Hunt
, E.
Ott
, and E.
Rosa
, “Sporadically fractal basin boundaries of chaotic systems
,” Phys. Rev. Lett.
82
, 3597
–3600
(1999
).17.
J.
Guckenheimer
and R. F.
Williams
, “Structural stability of Lorenz attractors
,” Inst. Hautes Études Sci. Publ. Math.
50
, 59
–72
(1979
).18.
W.
Tucker
, “A rigorous ODE solver and Smale’s 14th problem
,” Found. Comput. Math.
2
, 53
–117
(2002
).19.
E.
Lorenz
, “Deterministic nonperiodic flows
,” J. Atmos. Sci.
20
, 130
–141
(1963
).20.
E. Sander, E. Barreto, K. Josic, and P. So, “Synchronization sets in drive-response systems,” in SIAM DSWeb Online Picture Gallery (http://www.dynamicalsystems.org/pi/sm/detail?item=35, 2003).
21.
N.
Fenichel
, “Persistence and smoothness of invariant manifolds for flows
,” Indiana Univ. Math. J.
21
, 193
–226
(1971/1972
).22.
M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583 (Springer, Berlin, 1977).
23.
J.
Stark
, “Regularity of invariant graphs for forced systems
,” Ergod. Theory Dyn. Syst.
19
, 155
–199
(1999
).24.
S. B. Nadler, Jr., Continuum Theory, An Introduction, Vol. 158 of Monographs and Textbooks in Pure and Applied Mathematics (Dekker, New York, 1992).
25.
M.
Barge
and W. T.
Ingram
, “Inverse limits on [0, 1] using logistic bonding maps
,” Topology Appl.
72
, 159
–172
(1996
).26.
V.
Afraimovich
, J.-R.
Chazottes
, and A.
Cordonet
, “Synchronization in directionally coupled systems: Some rigorous results
,” Discrete Contin. Dyn. Syst. B
1
, 421
–442
(2001
).27.
M.
Barge
, K.
Brucks
, and B.
Diamond
, “Self-similarity in inverse limit spaces of the tent family
,” Proc. Am. Math. Soc.
124
, 3563
–3570
(1996
).28.
P.
Minc
and W. R. R.
Transue
, “A transitive map on [0, 1] whose inverse limit is the pseudoarc
,” Proc. Am. Math. Soc.
111
, 1165
–1170
(1991
).29.
D.
Hadjiloucas
, M. J.
Nicol
, and C. P.
Walkden
, “Regularity of invariant graphs over hyperbolic systems
,” Ergod. Theory Dyn. Syst.
22
, 469
–482
(2002
).30.
W. S.
Mahavier
, “Arcs in inverse limits on [0, 1] with only one bonding map
,” Proc. Am. Math. Soc.
21
, 587
–590
(1969
).31.
G. W.
Henderson
, “The pseudo-arc as an inverse limit with one binding map
,” Duke Math. J.
31
, 421
–425
(1964
).32.
J.
Chubb
, E.
Barreto
, P.
So
, and B.
Gluckman
, “The breakdown of synchronization in systems of nonidentical chaotic oscillators: Theory and experiment
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
11
, 2705
–2713
(2001
).33.
K. Josic and E. Sander, “Noisy synchronization sets for noninvertible drives” (http://math.gmu.edu/∼sander/research/josicsander/).
34.
R. F.
Williams
, “One-dimensional non-wandering sets
,” Topology
6
, 473
–487
(1967
).
This content is only available via PDF.
© 2004 American Institute of Physics.
2004
American Institute of Physics
You do not currently have access to this content.